NnUvoToN

Next-Generation Intelligent Terminal

Embedded System Development

Tutorial Manual

Using
The NuMaker-X-M55M1 Development Board



Table of Contents

Part. A- M55M1 System Development Guide

1 Introduction to CPU, GPU, NPU, and EAGE Al......cuuininiieiiiiii e, 5
1.1 Overview of CPU, GPU, and NPU .........cccoiiiiiiiiiiiiiiiiiiii i 5
1.2 INtrodUuCtioN tO EAZE Al ....enieiiiiii ittt e e e eneesaeanns 11
1.3 Edge Al Application DOMAaINS . .....vuuiiiiirieieee et eteree e e e eneenreseneenns 12

2 Introduction to NuMaker-X-MB5MT......ccoiiiiiiiiiiiiiiiiiiiii i 14
2.1 NuMaker-X-M55M1 Development Board Specifications .......c.ccceveveveennennnn. 14
2.2 Hardware Configuration ......ccuiuiiiiiiiiriie et e e es e e eneneasanaanns 18
2.3 EXPanSION INTEITACES .iuiiiiiiiiiiii it e et e e easasanaanns 23

3 Full Deployment Workflow for Application Development ........ccceeveviniinnininennnnnnes 28
3.1 Overall Deployment FLOWCHhArt .. ...ieeiiiiiiiiiiiie e eeee e 28
3.2 TiINYML MOAEl TraiNiNg ..c.ciue ittt e e eae et et e ene e enenenneaneanaens 31
3.3 Model Optimization for Deployment (Model Quantization).......c.ccceeueevinnenns 44
3.4 Vela Compiler (NPU ACCELEration) .....cuveiieeureuiiiiieeiieiiireirereneeneeneeneeneeneens 47
3.5 Configuring Hardware and Software with C Language .......ccccoeeveuviniinninnnnnns 52
3.6 Program Development and Flashing on the Development Board.................. 60

Part. B - NuMaker-X-M55M1 Development Board Implementation Examples

1 Smart Factory 1 —Safety Helmet Detection ......ccviuviiiiiiiiiiiiiiiic e eeeaaas 70
1.1 Use Case Overview — Safety Helmet Wearing Detection .......ccccoeevvevninninnnnnns 70
1.2 Dataset and Al ModelTraiNing ....c.coueiiiiiiiiiiie e e e e e aeaaas 73
1.3 Model Training Using PyTorch Framework on PC with Anaconda.................. 78
1.4 Inference Program System Flow on the Nuvoton M55M1 Board ................... 83

2  Smart Factory 2 —Fire DeteCtiON ..c.ciuiiuiiiiii e te e e e e e e e e e e e 90
2.1 Use Case Overview — Fire Detection ......ccccceeeiiiiiiiiiiiiiiiiiiiiiiiiciciicceene, 90
2.2 Dataset CollECTiON ....iueiiii ittt ettt e 91
2.3 Training the Fire Detection Model on PC Using Anaconda Environment........ 96
2.4 Inference Program System Flow on the Development Board...................... 104
2.5 Conclusion and Future Development .......coviiiiiiiiiiii e aaa 113

3  Smart Factory 3 - Noise Reduction and Keyword Detection .......c.ccccveveevnennnnnn.n. 116

-2-



3.1 Case Overview — Noise Reduction and Keyword Detection ........c...cccccue..... 116

3.2 Development ProCess OVEIVIEW ......iuueiiieiiieeiieeiieeiie e etieeieeneeeneeneenneanes 120
3.3 Theoretical Foundation of Spectral Subtraction ........c..ccoiiviiiiiiiiiiiininnnnn. 124
3.4 Python-Based Denoising Simulation .........coeeeiiiiiiiiiiiiiiiiiiieeeeeeeee, 128
3.5 C Implementation on the M55M1 Development Board.........ccccceeenennnnnnen... 133
3.6 Integration of the Keyword Spotting Module ......c.c.ccooiiiiiiiiiiiiiiiiiiiiiene. 137
3.7 Program Architecture and Optimization Strategies....c...cceeeeiieeiieniieninennnenn. 140

Smart Healthcare 1 — Drug RECOZNITION ..vuvvniiiiiiieieieiie e e eaees 146
4.1 Case Introduction — Drug ReCOgNItiON .....ivuviriiiiiiiiiieiiriieiie e eeeenees 146
4.2 Dataset and Model OVEIVIEW ......c...viiuuiiiiiiiiiiiiiiiiii e 149
4.3 Training Environment and Hardware OVErview ........ccccevevevinninnincinnennennnenns 150
4.4 MOAELTIAINING c.evniieiieie it te et eaerereneeeensanesnsansanesassansensennes 151
4.5 C++ Software Implementation......cceieeiiriiiiirir e eeeeeeanas 156
4.6 C++ Software Design —Model InferenCe . .....coveuvieiieiiiiiiiiiiiiririe e 161

Smart Healthcare 2 — Fall Detection........cccucvviiiiiiiiiiiiiiiiiiiii e 166
5.1 Case Introduction — Fall Detection.......ccccceeueiiiiiiiiiiiiiiniiiiiiiiniiciccine, 166
5.2 Overview of Fall Detection TEChNIQUES ......vvuiiiiiiiiiiiiiiiiiiiir e 167
5.3 Using an Open-Source Dataset from RobOflow .......cccvvviviiiniiniiniinninnnnnne. 169
5.4 Model Training on PC Using the Anaconda Environment .......c..ccccceevennenn.. 171
5.5 Inference Program System Flow on Development Board..........ccccvevninnnenne. 175
5.6 Conclusion and Future Development .......cviviiiiiiiiiieniiiiir e cneanean 182

Smart Home Application 1 — Waste Classification ........ccoevvviviiiiiiiiniiinininnennnn, 184
6.1 Case Study —Waste ClassifiCation......ccceiiviiiiiiiiiie e ea e 184
6.2 Dataset and Model TraiNiNg ..o iiiiiiiie et ee e eae e e eaeaaaa 186
6.3 Evaluate TFLite int8/float Model (OVEIVIEW)....c.ceuiuiiiiiiiiiiieieeeeeeieeeanaan 192
6.4 CH+ SOftWAre FLOW ...couuiiiiiiiiiiiiiiiiin et 195
6.5 System Program ANAlYSiS ... iiiiiiiiie e et e e ee e e eaneaneanaens 197
6.6 FULUIE OULLOOK c.eveieiiiiiiieiiiceii ettt e 210

Smart Home Application 2 — Personnel Tracking......cccueeveiiiiiiiiiiiieieeeeeeieeneannn, 211
7.1 Case Introduction — Personnel TraCking .......cccveueiieieiiiiiiiiiieiieiieeieeieeneeannas 211
7.2 MOdEl COMPAISON ..iuiiiiiiiiieiie ettt ie e ee e e et et et et ereenesnesnesnessassnsenesnes 213
7.3 LabEUME - ettt e et e et 214
7.4 Model Training on PC with Anaconda Environment.........cccceeiiiiiiiiiinnnenn.. 216
7.5 Inference Program System Flow on the Development Board...................... 223

Smart Agriculture 1 — Apple Quality Recognition .......ccueiviiiiiiiiiiiiiiiieeieeeeeeieene, 232
8.1 Case Introduction — Apple Quality Recognition.......cccccceveueiiiiiiiiinirenrennnenn. 232

-3-



8.2 MOAEL COMPATISON ..iiueiiiiiiiie ittt ete et eteeteeeeeeeeeneenneennsannsennsennsanns 234
8.3 =Y o 1= U [ o V- S PO UPOP PR PPPPPRRPPPPRt 236
8.4 Model Training in Anaconda Environment onPC........ccccciiiiiiiiiiiniiinniennnen. 237
8.5 FUTUIE OULLOOK e e e 244
9  Smart Agriculture 2 —Fish Fry COUNtING ....cuvimiiiiiiiiiiii et 246
9.1 Case Introduction — Fish Fry Counting.......cceeuiiieiiiiiiiiiiiiicieeeeeeee, 246
9.2 System Workflow and Program Modules........cceeeeieiiriniiirinieeieneennens 247
9.3 Dataset and Model TraiNiNg .....eeeveririiriie et eee et e e eneeeereneennan 249
9.4 C++ Design, Deployment, and Flashing........cccceeiieiiiiiiiiiiiiiniinieeeeeeeennen 252
9.5 Conclusion and Future OUtlooK........cccceuiiiiiiiiiiiiiiiiiiiiii i, 263
10 Smart Agriculture 3 — Fish Species ReCOgnition .....cccceeeveiiiiiiirinnieirieeieeneennes 266
10.1  CaseIntroduction — Fish Species Recognition .........ccvevvivenrinrennincinnennennnen. 266
10.2  System Workflow and Program Modules.......cccccivviiiiiiiininininiciiceneennen, 267
10.3 Dataset and ModelTrainiNg ...cc.ceuiiiiiiriieiieieieie et eie e e e eeeeeaneens 268
10.4 C++ Design, Deployment, and Flashing........ccccouviiiiiiiiiiiiniiniiniirre e, 272
10.5 Conclusion and Future OULOOK........ccouuiiiiniiiiiiiiiiiiiiiiiii e, 282



1 Introduction to CPU, GPU, NPU, and Edge Al

1.1 Overview of CPU, GPU, and NPU

With the rapid advancement of artificial intelligence (Al) technologies, we are
entering a new era of intelligent systems. Edge Al, as one of the core driving forces
in this era, is revolutionizing the way we live and work at an unprecedented pace.
The primary advantage of Edge Al lies in its ability to perform data processing
directly on the device, significantly reducing dependency on cloud computing.
This enables real-time data analysis and response, which is critical for
applications that require high performance and low latency.

Compared to traditional cloud computing, Edge Al offers significantly improved
efficiency and minimizes latency during the processing cycle. This capability
enables a wide range of applications that rely on real-time responsiveness. For
instance, autonomous vehicles depend on immediate analysis of road conditions
to make split-second decisions. Smart healthcare devices require real-time
interpretation of patient physiological data to support medical decision-making.
Intelligent manufacturing systems can continuously monitor production line
status and make adjustments on the fly. These applications are made possible
through the support of Edge Al.

As technology continues to advance, Edge Al is expected to become increasingly
widespread, extending beyond traditional data centers into various embedded
devices and becoming an integral part of everyday life. From smart homes to
industrial automation, Edge Al will not only be a component of the ongoing
technological revolution but also a foundational element of how we live and work
in the future.

1.1.1 Introduction to CPU, GPU, and NPU

1. CPU (Central Processing Unit)

(1) Design Purpose:

The CPU is the core processing unit of a computer, primarily responsible
for executing instructions and performing logical operations. Often
referred to as the "brain" of the computer, it interprets and carries out
commands from software applications.

-5-



(2) Number of Cores:
Modern CPUs typically feature multiple cores, ranging from 1to 16 or more.

a. Single-core: Suitable for basic computing tasks.

b. Multi-core: Capable of executing multiple processes concurrently,
making it ideal for high-performance applications such as image
processing and gaming.

(8) Performance Advantages:

CPUs are optimized for high single-core performance, focusing on
complex control logic, branching decisions, and multitasking.

a. Control Logic: Manages conditional branching and sequential
execution (e.g., pipelining techniques).

b. Branch Prediction: Minimizes performance penalties from conditional
instructions.

c. Multitasking: Multi-core architecture allows simultaneous execution of
multiple applications, enhancing overall system performance.

(4) Application Scenarios:
CPUs are mainly used in the following areas:

a. Running operating systems (e.g., Windows®, Linux®)
b. Office productivity software (e.g., Word®, Excel®)
c. General daily tasks such as web browsing

(5) Major Manufacturers:
a. Intel®: One of the world’s leading CPU manufacturers, known for high-
performance processors such as the Core i® series.
b. AMD®: Another major CPU vendor, recognized for its cost-effective
solutions and strong multi-core capabilities, such as the Ryzen® series.

2. GPU (Graphics Processing Unit)

(1) Design Purpose:

The GPU was originally designed to accelerate graphics processing,
primarily used for rendering images and visual output. However, with the
increasing demand for computation, GPUs are now widely utilized in
various domains, including:



a. Data Processing: Suitable for handling large-scale data workloads.
b. Scientific Computing: Ideal for high-performance applications such as
simulations and weather forecasting.

(2) Number of Cores:

GPUs contain a significantly larger number of processing cores compared
to CPUs, typically ranging from hundreds to thousands. This high core
count makes GPUs especially well-suited for parallel computing tasks
such as graphics rendering and matrix operations.

(8) Performance Advantages:
GPUs offer notable advantages in the following areas:

a. High Parallelism: Capable of executing a vast number of similar
operations simultaneously, making them ideal for:
e Matrix Operations: Such as linear algebra and neural network
computations.
e Deep Learning: Supporting large-scale data processing, including
tensor operations.
b. High Throughput: Optimized for processing large volumes of data, often
outperforming CPUs in specialized tasks.

(4) Application Scenarios:
Key use cases for GPUs include:

a. Graphics Rendering: Providing powerful rendering capabilities for
gaming, animation, and design software.

b. Video Processing: Used for video encoding, decoding, and post-
production workflows.

c. Big Data Analytics: Accelerating computation and analysis of large
datasets.

d. Machine Learning: Essential for training deep learning models and
executing Al applications.

(5) Major Manufacturers:

NVIDIA®: A global leader in GPU manufacturing. Its product lines, such as
GeForce® and Tesla®, are widely adopted across gaming, professional
design, and high-performance computing industries.

3. NPU (Neural Processing Unit)



(1) Design Purpose:

The NPU is a processor specifically designed for Artificial Intelligence (Al)
and deep learning applications. Its primary objective is to accelerate the
computation of neural network models, particularly tasks involving matrix
multiplication, convolution operations, and other computationally
intensive workloads.

a. Allnference: Real-time processing of neural networkinference, such as
image and speech recognition.

b. Al Training: While some NPUs support training, most are optimized
primarily for inference workloads.

(2) Number of Cores:

The architecture of an NPU typically consists of a large number of
lightweight specialized cores engineered for efficient neural network
computations.

a. May include hundreds to thousands of cores.
b. Delivers highly parallel computing performance, focusing on
accelerating specific neural network operations.

(8) Performance Advantages:

Compared to traditional processors such as CPUs and GPUs, NPUs offer
the following advantages in Al applications:

a. High Energy Efficiency: Hardware optimized for Al algorithms enables
more efficient computation with lower power consumption.

b. Low Latency: Enables real-time Al inference, such as object detection
in autonomous driving.

c. Custom Optimization: Equipped with built-in Al acceleration
instruction sets, optimized for specific models such as CNNs and
RNNs.

(4) Application Scenarios:

NPUs are widely used in the following fields:

a. Autonomous Vehicles: For object detection and path planning.
b. Smartphones: To accelerate Al functions such asimage processing and
voice assistants.



Edge Devices: Enables Al inference in Internet of Things (loT)
applications.
Cloud Computing: Efficiently handles inference tasks for deep learning

models.

(5) Major Manufacturers:
a. Google®: Developed the TPU (Tensor Processing Unit), a dedicated Al
accelerator categorized under NPUs.

b. Apple®: Includes a "Neural Engine" in its A-series chips, serving as the
NPU for tasks like image processing and speech recognition.

Component CPU GPU NPU
Design General-purpose Large-scale parallel = Specifically designed to
Purpose computing, executes processing, accelerate neural
instructions and primarily designed networks and deep
performs logical for graphics learning workloads.
operations. rendering.
Core Count Few cores (typically 1 Many cores Typically consists of
to 16). (hundreds to hundreds of processing
thousands). units optimized for
matrix and convolution
operations.
Performance High versatility; Highly parallel; ideal Optimized for neural
Advantages limited parallel for large-scale data network computation
processing processing. and inference tasks.
capability.
Primary Operating systems, Graphics rendering, = Deep learning inference,
Application office software, basic video processing, neural network
computing tasks. big data analysis, computation, embedded
Areas machine learning. Al applications.
Power Relatively low. Higher, especially Relatively low,

Consumption

under heavy
workloads.

particularly in mobile
and edge devices.

Table 1 Comparison Table of CPU, GPU, and NPU

1.1.2 Core Hardware: Nuvoton NuMaker-X-M55M1
Development Board

In the Edge Al revolution, hardware selection plays a critical role. The Nuvoton

-9-



M55M1 is a high-performance microcontroller designed specifically for Edge Al
applications, offering powerful computing capability, low power consumption,
and comprehensive development support. The NuMaker-X-M55M1 development
board is an ideal platform for efficient edge computing and features the following
highlights:

(1) High-Performance Microcontroller Architecture

The NuMaker-X-M55M1 development board is built on the ARM® Cortex®-M55
processor, delivering efficient computational power. It supports various
mainstream Al training frameworks and enables real-time inference
processing. This allows developers to run machine learning models directly on
edge devices and apply them in a wide range of real-world scenarios.

(2) Low Power Consumption Design

The low-power architecture of the M55M1 is well-suited for energy-
constrained embedded environments. Whether used in wearable devices or
smart sensors, the board ensures extended operation without excessive
power drain.

(8) Comprehensive Software and Hardware Development Support

Nuvoton provides a complete software development ecosystem for the
NuMaker-X-M55M1 board, including drivers, development kits, and machine
learning model support. Whether for beginners or professional developers, it
offers a rapid path to creating edge Al applications.

1.1.3 In-Depth Learning and Applications

This book serves not only as a technical manual but also as a practical guide,
helping readers master the application of Edge Al technology from both hardware
and software perspectives, and from foundational concepts to advanced
implementation. It covers the following key areas:

1. Hardware Configuration and Architecture

Gain a thorough understanding of the internal architecture of the NuMaker-X-
M55M1 development board, from the microcontroller and memory to various
external interfaces, empowering readers to design and implement edge
computing solutions using the board.

2. Model Training and Optimization

-10 -



Edge Al development goes beyond hardware design and includes the selection
and optimization of machine learning models. This book introduces how to
select appropriate Al models and optimize them based on specific application
requirements, thereby enhancing the computational performance of edge
devices.

3. Application Case Studies

Through real-world case studies in smart manufacturing, smart healthcare,
and smart agriculture, this book demonstrates practical applications of Edge
Al. These examples show how Edge Al can be integrated into real-world needs,
transforming traditional industries, increasing productivity, reducing costs,
and promoting sustainable development.

1.1.4 Target Audience

This book is designed for a wide range of readers. Whether you are a beginner
exploring Edge Al technologies or a professional engineer looking to enhance your
technical capabilities, you will find value in these pages. For beginners,
foundational concepts and hands-on examples will help you quickly get started
and acquire core skills. For experienced engineers, the book offers in-depth
technical details and application cases to support the integration of Edge Al into
real-world projects, improving work efficiency and innovation potential.

As Edge Al continues to evolve, it will drive innovation and reshape the way we live
and work. This book will help you take the first step in Edge Al development and
guide you into this dynamic and opportunity-rich field.

1.2 Introduction to Edge Al

1. Whatis Edge Al?

Edge Artificial Intelligence (Edge Al) refers to the deployment of Al computing
capabilities directly on devices near the data source, such as smart sensors,
industrial controllers, and surveillance cameras, instead of relying solely on
traditional cloud servers or data centers. This distributed architecture enables
edge devices to process and analyze data locally in real time, delivering low
latency, enhanced privacy, and greater cost-efficiency. Pre-trained Al models are
deployed on edge devices, allowing them to make fast, local decisions, ideal for
time-sensitive application scenarios.

-11 -



2. Advantages of Edge Al

Low latency, enhanced data privacy, offline capability, and energy efficiency.

1.3 Edge Al Application Domains

1. Smart Manufacturing: Real-Time Monitoring and Predictive Maintenance

Smart manufacturing is a prime application of Edge Al. Within factories, Al
systems can monitor the operational status of machineryin realtime and respond
rapidly to anomalies. For example, predictive maintenance powered by sensor
data can help identify potential equipment failures in advance, reducing
downtime and maintenance costs. With computer vision, Edge Al can also be
used for workplace safety monitoring, detecting unsafe behavior and ensuring
compliance with safety standards.

2. Smart Home: Enhancing Quality of Life

Smart homes represent another rapidly growing field for Edge Al. By incorporating
vision recognition, home devices can identify household members and adapt the
environment accordingly. Edge Al enables real-time control of lighting, HVAC
systems, and appliances based on environmental conditions or user preferences,
offering a more comfortable and intelligent living experience. Devices such as
smart locks, home surveillance systems, and voice assistants also leverage Edge
Al to boost home security and convenience.

3. Smart Healthcare: Real-Time Monitoring and Health Management

Edge Al is transforming healthcare delivery through real-time monitoring of patient
health. Wearable devices can continuously track physiological data such as heart
rate, blood pressure, and body temperature. Edge Al processes this data locally
and can trigger alerts when abnormalities are detected, enabling timely
intervention. It also supports tasks like medication recognition and disease
prediction. Fall detection is another critical application, particularly for elderly
individuals, where the system can notify caregivers or medical services
immediately upon detecting an incident.

4. Smart Agriculture: Improving Farm Management Efficiency

Edge Al is gaining momentum in the agricultural sector. Using image analysis, it
monitors crop health and detects issues such as pests or nutrient deficiencies
early. This facilitates precise treatment, improving productivity while reducing the

-12-



use of harmful chemicals for more sustainable farming practices. Additionally,
Edge Al can continuously monitor environmental conditions, such as soil
moisture and climate trends, providing actionable insights for better agricultural
decision-making and enhanced crop yield and quality.

-13-



2 Introduction to NuMaker-X-M55M1

2.1 NuMaker-X-M55M1 Development Board
Specifications

The NuMaker-X-M55M1 is a microcontroller series developed by Nuvoton
Technology, specifically designed for edge Al applications. It offers exceptional
computational performance and low power consumption, making it well-suited
for high-performance requirements in edge computing. The core architecture and
processing capabilities of this microcontroller exhibit the following technical
features:

1. Processor Core
(1) Arm® Cortex®-M55 Core

The M55M1 microcontrolleris powered by an Arm® Cortex®-M55 processor
operating at a frequency of up to 220 MHz. It provides powerful digital
signal processing (DSP) capabilities, making it suitable for various high-
performance edge computing tasks. The Cortex®-M55 is designed with a
focus on low power and high efficiency, fulfilling the dual demands of
computation and energy efficiency in embedded systems.

(2) Efficient Digital Signal Processing

The core is capable of handling a wide range of DSP tasks efficiently and
supports high-performance data processing. It delivers stable
performance for applications such as audio processing, image processing,
and other Al-related tasks.

2. Neural Processing Unit (NPU)
(1) Arm® Ethos™-U55 NPU

The M55M1 is equipped with an Arm® Ethos™-U55 neural processing unit
(NPU), specifically designed for artificial intelligence applications,
operating at 220 MHz. This NPU provides efficient acceleration for neural
network computations and is particularly suited for running Al models on
resource-constrained edge devices, significantly improving inference
performance.

(2) Supportfor Deep Learning Inference

-14 -



The Ethos™-U55 NPU supports a wide range of neural network
architectures, including convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and other deep learning models. It offers robust
inference capabilities, making it highly effective in applications such as
object recognition, speech recognition, and image classification.

(3) Support for YOLO Model

This NPU also supports inference for the YOLO (You Only Look Once)
model, a popular real-time object detection algorithm widely used in
autonomous driving, intelligent surveillance, and security systems.

3. Memory
(1) 1.5 MB SRAM

The M55M1 includes 1.5 MB of static random-access memory (SRAM),
providing high-speed data access. This capacity is well-suited for large-
scale computations and data processing tasks, particularly those required
by high-performance Al applications.

(2) 2 MB Flash Memory

The microcontroller also integrates 2 MB of on-chip flash memory, which
can be used for storing program code, configuration data, and other non-
volatile information. This storage capacity enables the system to support
more complex and feature-rich applications.

4. Expandability
(1) HyperBus Interface

The M55M1 supports a HyperBus interface, allowing for the expansion of
external RAM and ROM. This interface is well-suited for embedded
applications requiring large-scale data computation or storage, such as
image processing, deep learning inference, or high-capacity data logging.
With HyperBus support, this microcontroller delivers excellent scalability
to meet demanding computational workloads.

5. Security Features
(1) Secure Boot

Secure Boot ensures that only authorized and unmodified code is executed
during system startup, thereby preventing unauthorized code or malicious
software from interfering with the boot process and ensuring system
integrity from the outset.

(2) Arm® TrustZone

-15-



Arm® TrustZone provides hardware-level security by dividing the system
into "secure" and "non-secure" zones. This architecture ensures that
sensitive data is processed and stored exclusively within the secure zone,
protecting against unauthorized access and enhancing overall system
security.

(3) True Random Number Generator (TRNG)

The M55M1 includes a hardware-based True Random Number Generator
(TRNG) capable of producing high-quality random numbers, which are
essential for encryption and secure communications, thus improving data
security.

(4) Encryption Modules (AES, ECC, RSA)

This microcontroller is equipped with integrated cryptographic modules
supporting AES (Advanced Encryption Standard), ECC (Elliptic Curve
Cryptography), and RSA (Rivest-Shamir-Adleman). These standard
algorithms help secure data transmission and storage, ensuring that
sensitive information remains protected from tampering or interception.

6. Support for Arm® Helium Technology

Arm® Helium technology is a hardware acceleration feature designed for digital
signal processing (DSP) and machine learning (ML) workloads. It significantly
enhances data processing efficiency and is especially valuable in low-power
embedded systems. The M55M1 microcontroller incorporates Helium technology,
offering the following advantages:

(1) Performance Boost

Helium enhances processing performance for ML and DSP applications,
accelerating data handling and optimizing compute efficiency. It is
particularly well-suited for real-time Al inference and data processing
scenarios.

(2) Software Tool and Library Support: CMSIS-DSP and CMSIS-NN

Arm® provides powerful DSP and neural network (NN) libraries—CMSIS-
DSP and CMSIS-NN—that fully leverage the Helium architecture. These
tools simplify development and offer ready-to-use, high-performance
algorithms, enabling developers to implement deep learning, audio
processing, image processing, and more with ease on the M55M1.

7. Communication Interfaces
(1) UART (Universal Asynchronous Receiver/Transmitter)

-16 -



Enables serial communication with other devices, offering a simple and
low-cost connectivity solution.

(2) SPI (Serial Peripheral Interface)

A high-speed data transfer interface suitable for interaction with external
instruments and sensor devices.

(3) I°C (Inter-Integrated Circuit)

A reliable and low-power communication protocol ideal for connecting
multiple peripherals, such as sensors or display modules.

(4) USB (Universal Serial Bus)

Supports high-speed data exchange with various external devices,
enhancing the system's expandability and peripheral integration.

Peripheral Features
(1) 24-Channel PWM (Pulse Width Modulation)

Allows control of devices such as motors, LEDs, and audio components.
The multiple channels support synchronized control for precise output
modulation.

(2) 2 Sets of SAR ADCs (Successive Approximation Register Analog-to-Digital
Converters)

Convert analog signals to digital data, ideal for processing sensor inputs of
various types.

(3) 1 Built-in Temperature Sensor

Provides real-time system temperature monitoring, making it well-suited
for embedded environmental supervision and system protection tasks.

Low Power Design
(1) Multiple Low-Power Operating Modes

The M55M1 microcontroller supports several power-saving modes that
significantly reduce energy consumption during idle or low-activity periods.
This design is especially beneficial for portable devices and long-duration
applications.

(2) Voltage Monitoring Modules

Equipped with multiple voltage monitoring units, the M55M1 ensures
system reliability by detecting and responding to abnormal voltage levels,
helping prevent system errors or crashes.

-17 -



2.2 Hardware Configuration

The M55M1 microcontroller solution is based on a dual-core architecture
consisting of the Arm® Cortex®-M55 (CPU) and the Ethos™-U55 (NPU). The main
features are as follows:

1. CPU-Cortex®-M55
(1) Operating Frequency Range: 200 to 240 MHz
2. NPU - Ethos™-U55
(1) Performance: Supports up to 256 MACs (Multiply-Accumulate Operations)
per clock cycle at 8-bit precision
(2) Neural Network Inference Support: Capable of accelerating inference for
neural network models such as CNNs (Convolutional Neural Networks)
and YOLO
(8) Al Acceleration: Provides dedicated acceleration for Al workloads in
embedded applications
3. Memory
(1) 1.5 MB SRAM: High-speed on-chip memory optimized for real-time data
access in high-performance computing tasks
(2) 2MB Flash: Embedded flash memory for storing application code and non-
volatile data
4. HyperBus Expansion — Supports One HyperBus Interface
(1) Frequency: Half the system clock (e.g., system clock at 220 MHz,
HyperBus runs at 110 MHz)
(2) Maximum Expansion Capacity: Up to 32 MB
(8) Use Case: Ideal for expanding high-performance embedded storage to
support tasks such as image processing, deep learning inference, or large
data caching
5. ExternalInterface Support
(1) Camera Module Interface: One dedicated interface for direct camera
module connection, enabling use cases in image processing and visual
recognition
(2) PDM Digital Microphone Support: Up to 4 PDM (Pulse Density Modulation)
digital microphone interfaces for audio capture and voice recognition
applications

M55M1
CPU Cortex®-M55
NPU Ethos™-U55

-18 -



Clock 220MHz

MAC/cc(8-bit) 256
Memory 1.5 MB SRAM
HyperRAM (on-board) 8 MB
Flash 2 MB Embedded
HyperBus 1 (110 MHz, 32 MB)
Camera 1
PDM Digital Mic 4

Table 2 Hardware Specification

2.2.1 Front View

Processor Core

(1) Core: The M55M1 is built on the Arm® Cortex®-M55 processor with an
integrated Ethos™-U55 NPU.

Memory Storage

(1) HyperRAM: Supports high-performance external RAM expansion for
handling larger datasets or faster data transfer.

. Communication Interfaces

(1) FS-USB Connector: Full-speed USB interface for data communication with
external devices.

(2) HS-USB Connector: High-speed USB interface suitable for applications
requiring fast data transfers.

(8) RJ-45 Interface: Supports Ethernet connectivity for network
communication.

. Wi-Fi Communication

(1) ESP-12F Module: Built-in Wi-Fi functionality for wireless connectivity, ideal
for loT applications.

. Audio and Sensors

(1) MEMS Microphone: Supports multiple digital microphone inputs for voice
processing and audio analysis.

(2) Phone Jack (Audio Output): Provides audio output for multimedia or audio
processing applications.

(3) MPUB500: Integrated 6-axis accelerometer and gyroscope for motion
detection and orientation sensing.

Built-in Debug and Programming Tools

(1) Nu-Link2-Me: Onboard debugger for rapid development and firmware
programming.

(2) ICE USB Connector: For connecting development tools and performing
system debugging.

-19-



1.

(3) VCOM Switch: Virtual COM port for convenient serial communication
between the developer and the board.

(4) Status LED: Indicates debugger or system status.

(5) Offline Programming Button: Supports firmware programming without a PC.

User Interaction and Expansion Interfaces

(1) User Buttons: Can be used for debugging or application-level interaction.

(2) User LEDs: Provide status indication or display test results.

(3) mikroBUS Interface: Allows connection to various expansion modules for
enhanced functionality.

(4) M55M1 Expansion Interface: Arduino UNO-compatible headers for rapid
prototyping and development.

Power and System Control

(1) Reset Button: Resets the system for easier development and testing.

(2) Power LED: Indicates board power status to verify system power is
functioning correctly.

Other Features

(1) CAN FD Transceiver: Supports the CAN FD protocol, ideal for industrial
automation and automotive applications.

nuvoTon

NuMaker-M55M1 V1.0

Figure 1: Front view of NuMaker-X-M55M1 development board

2.2.2 Rear View

Display Interface
(1) TFT LCD Interface (LCD I/F Connector):

-20 -



Supports connection to TFT LCD display modules, enabling visual
interaction and data display. This reliable interface is useful for debugging
and implementing display-related functionalities during development.

Camera Module Interface
(1) CMOS I/F Connector:

Supports the connection of CMOS camera modules, making it suitable for
applications such as image processing, visual recognition, and real-time
monitoring.

Storage Expansion
(1) SD Card Slot:

Provides support for external memory cards used for data storage or
firmware updates. This is ideal for applications that require large-capacity
storage, such as video recording or image data logging.

Power Management
(1) ICEVCC Power Switch:

Controls power supply to the ICE (In-Circuit Emulator) debugger, ensuring
stable power during debugging sessions.

(2) MCUVCC Power Switch:

Controls the main power supply for the MCU, allowing developers to
enable or disable the MCU power based on development or testing
requirements.

e
L)
L}
L)
L]
»
L]
»

Figure 2: Back view of NuMaker-X-M55M1 development board

-21-



1.

2.2.3 Power Supply Interfaces

FS-USB Connector
(1) Function:

Full-Speed USB interface that can serve as a power source for the
development board.

(2) Application Scenario:

Suitable for standard USB power supply applications, allowing stable
power delivery from a computer or other USB power source.

HS-USB Connector
(1) Function:

High-Speed USB interface that also supports power delivery.
(2) Application Scenario:

Ideal for embedded development requiring both high-speed data transfer
and power through a single interface.

NU1 Pin8 (VIN)
(1) Function:

Provides an external DC voltage input pin for powering the development
board.

(2) Voltage Range:

Requires a properly regulated DC input voltage as specified by the circuit
design.

External VDD and VSS Connectors
(1) External VDD Connector:

Allows external positive voltage supply to the development board.
(2) External VSS Connector:

Ground (negative) terminalto pair with VDD, ensuring stable voltage supply.
(3) Application Scenario:

Suitable for custom power supply designs or special power requirements
in advanced development environments.

-22 -



5. ICE USB Connector
(1) Function:

Used for debugging and programming via USB, and also provides power to
the board.

(2) Application Scenario:

When using the Nu-Link debugger, this interface can supply power and
facilitate data communication simultaneously.

FS-USB Connector
HR-USB Connacior ICE USB connector
NU1 pin8 (VIN) debugging and

programming from PC.
External Vo Connector

External Vs Connector

Figure 3: The power supply of NuMaker-X-M55M1 development board

2.3 Expansion Interfaces

The NuMaker-X-M55M1 development board supports multiple expansion
interfaces, including the M55M1 Extension Connectors, Arduino UNO-compatible
headers, and mikroBUS interface. These interfaces provide developers with a wide
range of options for application development and peripheral integration.

2.3.1 Arduino UNO-Compatible Expansion Interface

-23-



Ardunio UNO Compatible
Extension Connectors

Figure 4: Arduino UNO-Compatible Expansion

1. Hardware Compatibility
(1) Users can easily expand the board’s functionality using Arduino-
compatible modules such as sensors, displays, and wireless
communication modules.

2. Pin Layout and Functions
(1) Digital Signal Pins (Digital Pins)
a. Provides up to 14 digital I/O pins (D0-D13) for input or output of digital
signals.
b. Supports multiple communication protocols such as UART and SPI,
making it suitable for module control and data exchange.

(2) Analog Signal Pins (Analog Pins)
a. Includes 6 analog input pins (A0-A5) for reading analog sensor inputs,
such as temperature, light intensity, or distance sensors.

(8) Power Supply Pins

a. Includes 3.3V, 5V, VIN (external power input), and GND pins to support
various voltage requirements for external modules.

-24 -



i | e
me I vis | o

N

-

)

L= e
=% ox T <
Ll PA e et ML
T Y (PR msel v o] s ]
UAATI_ 300 | The 00 | .3 o —
LUMTLIID | *im Al we 2] o P O | K Sel |l i | T S
Diaital Pin :i O 1 ECH_Goa | AKT3 oD | 18
) B =lAnalog Pins
[ X I LS -~ walog 5
e ool A =t T skl
[ . L4008,
R - -
e (] v |
(TR ki Com !—i! = am . .
PIRAT] i) Do S8 W Power Pins
sFig mpso | WILIRAT TIHIS T3 =]
P Ox srewaney  re.s [Z%) SR -3
| i 5 N
[ vy Ve
ROSAl o
1200 s | .0 *$0

Figure 5: Pin layout of the Arduino UNO-compatible expansion interface

3. Use Cases and Module Compatibility (Supported Module Examples)

(1) GPIO Modules: Control digital signals for on/off switching or status
indication.

(2) 12C/SPI Modules: Such as display panels and SD card modules.

(83) UART Communication Modules: Such as Bluetooth or LoRa wireless
modules.

(4) PWM Applications: Control of servo motors or LED brightness adjustment.

(5) ADC Applications: Capture analog data from sensors such as sound
detectors or environmental monitors.

3 (0]
N |

& J
ADC 0
/

Figure 6: Examples of Arduino-compatible expansion modules

-25-



2.3.2 mikroBUS-Compatible Expansion Interface

1. Standardized Design
(1) The mikroBUS interface, developed by MikroElektronika, is a standardized
pinout interface designed to provide maximum expansion capability with
minimal pin usage.
(2) Its layout is simple and well-defined, supporting multiple communication
protocolsincluding I12C, SPI, and UART, making it suitable for rapid modular
development.

Figure 7: mikroBUS-Compatible Expansion Interface

2. Compatibility with Click Boards Series Modules
(1) mikroBUS is primarily used for connecting to the Click Boards expansion
module series.
(2) The Click Boards ecosystem includes over 1,645 modules with various
functions, covering applications such as sensing, communication, display,
control, and power management.

VCP Monitor 6 Click EZO Carrier Click - 1x4 RGB Click
Oxygen

Figure 8: Click Boards Expansion Modules

-26-



2.3.3 M55M1 Extension Connectors

1. Standardized Interface Design
(1) The connectors are positioned on the top and bottom edges of the
development board, providing multiple pins for external device expansion.
(2) The configuration is customizable based on application needs and can
connect to various sensors or dedicated functional modules.

M55M1
Extension Connectors

Figure 9: M55M1 Extension Connectors

2. High Compatibility
(1) Supports a wide range of peripheral interfaces including GPIO, 12C, UART,
and SPI protocols.
(2) Enables seamless integration with various external devices, such as
displays, storage modules, and data communication peripherals.

-27 -



3 Full Deployment Workflow for Application
Development

3.1 Overall Deployment Flowchart

The complete deployment process for the NuMaker-X-M55M1 development board
is divided into five major stages (as shown in the diagram), which include: TinyML
training, model quantization and conversion, Vela compilation and configuration,
C language programming, and deployment/flashing to the development board.
Each stage is described in detail below.

1. TinyML Training 2. Model Quantization 3. Vela 4.C Programming

iatsiatady g adeic bytaiadatoi Hand Conversion] Compliation 7
I TinyML Training N ™ Lightweight model - C/Ce+ Code
' TensorFlow TensorFlow Lite | R '"I ] Resource
' Framework Converter {1 O Configuration
P R R W - e &
U
INTH Quantizason Software
Vela compler Deployment
Training |
Data '
Device . NuMicro® MSSM1

EMUM Ethos- U558
Dmov
YFLu
Ml M55 KO'Nh
Ral nmrh

5. Deploy and Flash to Board

Figure 10. Using TensorFlow Framework

-28-



1. TinyML Training 2. Model Quantization 3. Vela 4. C Programming
and Conversion Compliation

TinyML Training Lightweight model e C/C++ Code
) . s Hardware
TensorFlow || Pretrained ‘ TensorFlow Lite P{ TFL fatbutter Sle 4]
Framework {_ Model ) Converter ﬂ, P Configuration
. t M < | &
INTS Quantization Softwire
ook Vela compilier Deployment
PyTorch
Framework
(Option) Device : NuMicro® MSSM1
T
Ethos-USS | Ethos-USS
- microNPy Driver J
[Training | - a—
S cMsIsaN | | TR LA
Optimized | | Runtime |
Conex-M55 Keenels

cPU

Ref. kemels

5. Deploy and Flash to Board

Figure 11. Using PyTorch Framework

3.1.1 TinyML Training

The TinyML training stage forms the foundation of the entire workflow, aiming to
generate a pre-trained model. The steps include:

1. Framework Selection: Both TensorFlow and PyTorch frameworks are
supported. When training with PyTorch, the model must be converted to
TensorFlow format via ONNX to be compatible with the target development
board.

2. Dataset Preparation: Developers need to prepare a high-quality dataset (e.g.,
from open sources like Kaggle or Roboflow), split into training, validation, and

test sets.

3. Model Selection: Lightweight models such as YOLOX-Nano are used due to
their small size and high performance, making them ideal for resource-
constrained embedded systems.

4. Output: A pre-trained model is produced, serving as the foundation for
subsequent quantization and deployment.

3.1.2 Model Quantization and Conversion

-29-



To meet the performance requirements of the M55M1 board, the trained model
must be quantized and converted:

1.

TensorFlow Lite Converter: Converts a TensorFlow model to TensorFlow Lite
(TFLite) format, which is lightweight and optimized for embedded
environments.

Quantization: INT8 full integer quantization is used to significantly reduce

model size and memory usage, while maximizing performance on the built-in
Arm® Ethos™-U55 NPU.

3.1.3 Vela Compilation and Configuration

Vela is a specialized compiler developed for Arm® Ethos™-U NPU to optimize

TFLite models and improve inference performance:

1.

Compiler Functions: Optimizes or merges supported neural network operators
for execution on the Ethos™-U55 NPU. Unsupported operations are handled by
the Cortex®-M55 CPU.

Configuration Options: Developers can choose between memory optimization
(minimizing SRAM usage) or performance optimization (maximizing inference
speed).

Output: An optimized TFLite model ready for hardware deployment.

3.1.4 C Language Programming

To deploy the model to the M55M1 board, developers must write C/C++ code for

hardware configuration and inference logic:

1.

Hardware Resource Configuration: Use C/C++ to control the M55M1
peripherals (e.g., NPU, PWM, UART).

Inference Logic: Implement input data preprocessing, model inference, and
output result parsing.

Post-processing: Add logic for post-inference tasks tailored to the specific
application, such as object detection and tagging.

-30-



3.1.5 Deployment and Flashing to the Development Board

Finally, the configured code and model are flashed to the M55M1 development
board:

1. Flashing Tools: Use Arm® Keil MDK pVision 5 or other compatible tools for the
M55M1.

2. Flashing Workflow: Includes project setup, hardware configuration, importing
the model and code, and flashing via micro USB.

3. Validation and Debugging: After flashing, debug the system to ensure stable
operation.

3.1.6 Summary

This complete deployment workflow integrates TinyML technology with
embedded development, enabling efficient Al applications on edge devices using
the M55M1 development board. The workflow is beginner-friendly while also
providing the flexibility for professional developers to build sophisticated
embedded Al systems.

3.2 TinyML Model Training

1. Application Scenarios Overview
This tutorial project covers four major smart application domains:

(1) Smart Factory: Includes personnel safety monitoring, equipment
operation status detection, and predictive maintenance.

(2) Smart Home: Applied in smart appliance control and anomaly detection
such as fire or intrusion alarms.

(8) Smart Healthcare: Enables fall detection and medication recognition.

(4) Smart Agriculture: Used for fruit quality analysis and fish fry counting.

These scenarios demand high real-time performance and accuracy, so the choice
of model must balance both performance and resource usage.

-31-



2. Framework and Model Used
(1) Framework: PyTorch
a. PyTorchis one of the most popular deep learning frameworks due to its
numerous advantages.

(2) Dynamic Computation Graph:

a. PyTorch uses a dynamic computation graph, meaning a new graph is
created each time an operation is executed. This allows flexible
handling of various data formats and model structures.

(3) Intuitive API Design:

a. Its APl is designed in a Pythonic style, making model construction and
debugging more intuitive.

b. Tensor operations are similar to NumPy, making it ideal for those
transitioning from data science to deep learning.

(4) Community and Ecosystem:

a. PyTorch has a strong developer community and extensive open-source
models and tools, which reduce the learning curve.

b. It supports various pre-trained models (e.g., ResNet, YOLO,
Transformers), accelerating development.

(5) GPU Acceleration Support:

a. It seamlessly supports GPU computation

b. Includes built-in distributed computing features for multi-GPU training.
(6) ONNX Format Support:

a. PyTorch-trained models can be exported to ONNX format for
deployment on other platforms like TensorFlow or edge devices.

3. Model Selection: YOLOX-Nano

YOLOX-Nano is a lightweight version of the YOLOX series, designed for resource-
constrained environments. It targets embedded systems where real-time object
detection and limited computational resources must be balanced.

4. Dataset Preparation
(1) For model training, datasets should be divided into three categories to
optimize model performance at each stage:
a. Training Set:
Used for feature learning and parameter tuning to improve model fitting
on training data.

-32-



b.

C.

Validation Set:
Used to evaluate model performance during training and monitor
overfitting.

Test Set:
Used to evaluate the model’s generalization ability and real-world
performance on unseen data.

5. Model Training Platform Selection

Choosing the right environment is crucial for successful deep learning model

training. Two common platforms are:

(1) Google Colab

A free cloud-based platform by Google, enabling users to write and run Python

code in a browser—particularly well-suited for deep learning development.

Advantages:
a. Free GPU resources (Tesla K80, T4, P100, or V100)
b. Pre-configured environment (TensorFlow, PyTorch preinstalled)
c. Google Drive integration for easy file access/storage
d. Cross-platform (usable via browser on Windows/macQOS/Linux)

Disadvantages:

a.

Limited GPU usage time (sessions can be interrupted)

b. Shared resources lead to performance fluctuations

Requires stable internet and raises potential privacy concerns for
cloud-stored data

(2) Local Training

Training on your own computer or server is ideal for users needing full

performance and control.

Advantages:

a.
b.

Use high-performance GPUs (e.g., NVIDIA RTX series)
Full control over hardware/software environment

-33-



c. Higher data security (data stays local)
d. No cloud-imposed limits—suitable for long or large-scale training

Disadvantages:

High hardware costs and maintenance
More complex environment setup
Limited scalability compared to cloud

o 0 T o

Requires regular hardware upkeep and updates

Environment Setup Using NVIDIA GPU

Proper hardware and software configuration is critical. For NVIDIA GPU-based
training, follow these steps:

a. CUDA and cuDNN Installation and Configuration
e CUDA: A parallel computing platform providing APls for
accelerating computation on NVIDIA GPUs.
e CcuDNN: A GPU-accelerated library optimized for deep learning
operations (e.g., convolutional layers).
e Installation Steps:
1. Visit NVIDIA's official site to choose the right CUDA version
based on your GPU and OS: CUDA Toolkit Archive
2. Install the appropriate CUDA version.
Visitthe cuDNN download page: cuDNN Library
4. Extractand installitinto the corresponding CUDA directory.

w

Notes:

e Ensure CUDA and cuDNN versions are compatible with your framework
(e.g., PyTorch).
e Afterinstallation, run nvcc --version to verify the setup.

6. Using Anaconda to Create Virtual Environments
Visit Anaconda Official Site and download the version suitable for your OS.
Advantages:

a. Manage multiple isolated Python environments to prevent dependency
conflicts.

-34-


https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cudnn
https://www.anaconda.com/

b. Built-in Conda package manager simplifies installation of frameworks
like TensorFlow and PyTorch.

c. Simplified environment switching and maintenance for users working
on multiple projects.

3.2.1 Introduction to TinyML Models

1. Foundational Stage - CNN

The history of Convolutional Neural Networks (CNNs) dates back to the 1980s.
Yann LeCun proposed the earliest CNN architecture and introduced the LeNet-5
model in 1998. This model was successfully applied to handwritten digit
recognition. LeNet-5 pioneered the use of CNNs in computer vision and inspired
researchers to apply deep learning techniques to more complex image
recognition tasks.

Gt C3:f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 = *

Full connection Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection 4 LeNet'S

Convolutions

Figure 12: LeNet-5 Architecture

A major breakthrough followed in 2012 with the introduction of the AlexNet model
by Alex Krizhevsky. By employing a deeper network structure and activation
functions like ReLU, AlexNet significantly reduced the image classification error
rate from 26.2% to 15.3%. It won the ImageNet competition and marked the rapid
proliferation of deep learning in computer vision. The success of AlexNet
demonstrated the potential of deep neural networks for handling large-scale
image data and inspired the emergence of numerous subsequent models.

The R-CNN (Region-based CNN) series brought another significant advancement.
It was the first to combine region proposals with CNNs for object localization and
classification within an image. The core process of R-CNN involves using
bounding boxes to locate multiple object positions, then employing deep learning
models for feature extraction and classification. While R-CNN offers high

-35-



accuracy, its multi-stage process results in slower inference speed and higher
hardware requirements.

Object Recognition

Region Proposal
A
173

Vo b el

Recognition
(Classification /
feature extraction
+classification)

Figure 13: R-CNN Architecture Illustration

The introduction of the YOLO (You Only Look Once) series addressed the
limitations of R-CNN. Proposed by Joseph Redmon and colleaguesin 2016, YOLO
introduced a novel one-stage object detection method. Its core concept is to
complete object detection and classification in a single pass, greatly enhancing
speed and efficiency. Compared to R-CNN, YOLO offers much faster performance
and lower computational demands, making it well-suited for real-time
applications and deployment on resource-constrained embedded systems, such
as smart home devices and drones.

These technological advancements laid the foundation for the YOLO models and
illustrate the progressive evolution of deep learning in object detection. This
eventually led to efficient and lightweight models like YOLOX-Nano, capable of
delivering high performance on low-power edge devices.

2. Core Features of the YOLO Series

The YOLO (You Only Look Once) object detection models are well-known for their
efficient one-stage detection mechanism. These models divide an input image
into a fixed grid, where each grid cell is responsible for detecting multiple
bounding boxes, confidence scores, and class probabilities. This one-stage
detection pipeline enables YOLO to perform object localization and classification
in a single forward pass, making it highly suitable for applications requiring real-
time responsiveness.

-36 -



In contrast to traditional object detection methods, YOLO adopts a fully
convolutional neural network (FCN) architecture. It simplifies the detection
pipeline by integrating object localization, bounding box prediction, and
classification into a single model. This approach significantly improves
processing speed and makes the model more suitable forembedded deployment.

Class probability map

Figure 14: YOLO Object Detection Illustration

YOLO’s primary advantages are its high speed and low computational overhead.
Because its architecture performs detection and classification simultaneously,
YOLO is ideal for embedded devices with limited computing resources. The
simplified computation process also results in fewer hardware requirements,
enabling efficient object detection even on edge devices with constrained
resources.

3. Comparison Between R-CNN and YOLO

In the evolution of object detection, the R-CNN (Region-based Convolutional
Neural Network) was one of the earlier deep learning models. It performs object
detection by extracting region proposals from an image, then applying feature
extraction and classification to each region. However, this multi-stage process—
region proposal, feature extraction, and classification—results in slow inference
speeds and high hardware demands.

YOLO fundamentally changed this process. Compared to R-CNN, YOLO
integrates all stages into a single model using a one-stage detection method. This
significantly improves inference speed and reduces system computational load.

-37-



Furthermore, YOLO adopts an anchor-free mechanism, eliminating the need for
manually defined prior anchor boxes. This simplification further reduces
computational complexity and enhances efficiency, making YOLO more suitable
for real-time applications.

4. Evolution of the YOLO Series

e Key Features of Each Version

The YOLO series has evolved through multiple versions, each with significant
improvements:

YOLOvVS5, developed using the PyTorch framework, is known for its ease of use and
deployment. It introduces an AutoAnchor mechanism that automatically adjusts
anchor box sizes based on input data, improving detection accuracy and
deployment flexibility.

YOLOX-Nano is a lightweight variant specifically designed for edge computing. It
features an extremely compact structure that enables efficient object detection
on low-resource hardware. It uses EfficientNet-Lite as its backbone to reduce
parameter count while maintaining high performance.

YOLOvV7 refines the overall model architecture to improve inference speed and
accuracy, making it especially suitable for real-time applications.

YOLOVS8 introduces a modular design that supports multitask applications such
as object detection, image segmentation, and pose estimation. This flexible
architecture allows for adaptable configurations based on specific use cases.

5. YOLOX-Nano Model Overview

e Parameters and Performance

YOLOX-Nano is amongthe most lightweight models in the YOLO series. It contains
only approximately 1.0 million parameters and has a model size of around 2MB.
Despite its compact size, YOLOX-Nano strikes a strong balance between accuracy

- 38 -



and computational efficiency, making it an ideal choice for resource-constrained
devices.

The model is specifically designed for embedded systems and loT devices,
emphasizing high performance with low compute demands.

a1

YOLOX-
39 005.

X

37
x EfficientDet-Lite3

d
o

w

YOLOX-Tiny L ] EfficientDet-Lite2

COCO AP (%)
H W

EfficientDet-Litel

el
- ®

r

YOLOX-Nano X
EfficientDet-Lite0

el
[h]

(Y]
w

A

PPYOLO-Tiny YOLOva-Tiny
05 15 25 35 45 55 65 75 B85 85 105 115 125
Number of parameters (M}

NanoDet

[
s

Figure 15: YOLOX-Nano Performance Comparison (Official GitHub)

6. Model Architecture

The YOLOX-Nano model consists of three main components:

Backbone: Utilizes EfficientNet-Lite, a lightweight, optimized network designed to
reduce computation while maintaining performance.

Detection Head: Employs a YOLO-style detection head to handle multi-object
detection tasks efficiently.

Anchor-Free Mechanism: The model adopts an anchor-free detection strategy,
removing the need for predefined anchor boxes. This enhances flexibility and
reduces configuration complexity.

7. Advantages and Application Scenarios

YOLOX-Nano’s main advantages lie in its high-speed detection and compact
architecture, making it particularly suitable for:

e Mobile devices

-39 -



e Embedded systems
e |ol edge applications

Due to its small parameter count and low computational demands, YOLOX-Nano
is easy to deploy and can operate on various hardware platforms. These
characteristics make it well-suited for use cases that require high efficiency and
low power consumption.

With its efficient design and optimized performance, YOLOX-Nano delivers high-
quality object detection even on low-resource devices. Its lightweight structure
and strong accuracy make it an ideal candidate for edge Al deployments,
particularly in latency-sensitive and power-constrained environments.

As edge computing continues to evolve, lightweight models such as YOLOX-Nano
are expected to play an increasingly vital role. They provide high-performance
solutions under hardware constraints and are significant for the development of
future intelligent systems. Through continuous optimization, YOLOX-Nano and its
successors are poised to further enhance their capabilities and broaden their
application scope—offering intelligent solutions for diverse resource-limited
scenarios.

3.2.2 YOLOX-Nano Training Workflow

YOLOD,

€xceeding YOLO series in 202l

Figure 16: YOLOX Official Diagram

1. Reference Materials
e The official YOLOX-Nano GitHub repository is available at:
https://github.com/Megyvii-BaseDetection/YOLOX

-40 -


https://github.com/Megvii-BaseDetection/YOLOX

e This repository includes detailed documentation and example code for
training, evaluation, and deployment.

2. Dataset Preparation
(1) Purpose and Key Points
a. Preparing a well-structured and diverse dataset is the first and most
critical step in the YOLOX-Nano training pipeline. The goalis to provide
the model with sufficient labeled image data to enhance its object
detection accuracy and generalization capability.

(2) Recommended Dataset Sources

The following are three commonly used open-source platforms for image
data collection and annotation:

a. Kaggle: The world’s largest platform for data competitions, offering a
rich selection of pre-annotated datasets, including popular object
detection datasets like COCO.

kaggle ¢

Figure 17: Kaggle Dataset

b. Roboflow: A dedicated image dataset platform designed for machine
learning. Provides tools for annotation, data augmentation, and
dataset management, making it ideal for quickly building high-quality
training datasets.

@ roboflow

Figure 18: Roboflow Platform

-41 -



c. Open Images Dataset: A large-scale open-source image dataset
provided by Google. Contains diverse scenes and annotation
categories, suitable for both object detection and classification tasks.

Figure 19: Open Images Dataset

Once the dataset is prepared using the above platforms, the process can move
forward to the TinyML training stage, where the YOLOX-Nano model is trained
using the curated data.

3.2.3 Machine Learning Framework (PyTorch or TensorFlow)

The modeltraining process may utilize either PyTorch or TensorFlow as the primary
framework. However, since the target development board (NuMaker-X-M55M1)
operates under the TensorFlow framework for deployment, any models trained
using PyTorch must be converted into the TensorFlow format via ONNX (Open
Neural Network Exchange).

-42 -



___________________________________________

Lightweight model

Pretrained
Model

TensorFlow Lite
Converter

TFL flatbuffer file }

)

[ Vela compiler J

INT8 Quantization

PyTorch
Framework
(Option)

Training
Data

Figure 20: Model Training Workflow Diagram

3.2.4 Model Conversion

To deploy the model onto the embedded hardware, conversion from the original
training format to TensorFlow Lite is required.

If the modelis trained in PyTorch, it should be exported to ONNX format, and then
converted into a TensorFlow-compatible format using ONNX tools.

@% ONNX
S Caffe- ’$+ RUNTIME
/ ~O Caffe2

O PyTorch / / e
€ Tensor l ~O PyTorch

Keras __—=& ONNX < _$*TensorFl

@xnet / \\ Keras

- \ "~ @xnet
| \
N | I
CNTK B
CNTK
export to onnx ® ¢ load from onnx

Figure 21: Model Conversion via ONNX

-43 -



3.3 Model Optimization for Deployment (Model
Quantization)

Overview

Model optimization is a key step in the TinyML workflow. Its purpose is to convert

pretrained deep learning models into lightweight versions that can efficiently run

on resource-constrained hardware platforms. This typically involves techniques

such as model compression and quantization, which reduce computational and

memory demands while preserving performance.

1.

___________________________________________

Lightweight model

TensorFlow Pretrained TFL flatbuffer file ]

Framework Model

TensorFlow Lite
Converter

i)

[ Vela compiler J

INT8 Quantization

Framework

PyTorch
(Option)

Training
Data

1
1
1
1
1
]
1
1
1
[
1
[
1
[
[
1
[
1
1
[
1
[
1
1
1
1
i
i
1
1
1
1

]

Figure 22: Training Pipeline Diagram

3.3.1 TensorFlow Lite Converter

TensorFlow Lite: Usage and Functionality

(1) TensorFlow Lite is a mobile-focused deep learning library designed for
efficiently deploying models on mobile devices, microcontrollers, and
other edge platforms.

(2) Its core goal is to preserve inference accuracy while significantly reducing
memory footprint and computational overhead, making it ideal for low-
resource environments.

2. Role of the TensorFlow Lite Converter

-44 -



(1) TensorFlow Lite Converter is a critical component of TensorFlow Lite. It
transforms standard TensorFlow models (typically in .pb or SavedModel
format) into .tflite format.

(2) The resulting .tflite model is optimized for reduced storage size and is
executable on embedded or edge devices.

3. Advantages of Quantization
(1) Quantization techniques, such as INT8 quantization, further shrink model
size and improve performance during inference.
(2) These techniques are especially beneficial for edge deployment because
they maintain accuracy while dramatically lowering memory and compute
requirements.

3.3.2 Model INT8 Quantization

1. Background of Quantization Techniques
(1) Quantization is a key method for optimizing deep learning models in
environments with limited computational power, such as handheld or loT
devices.
(2) While some accuracy loss may occur during quantization, the gains in
efficiency often outweigh the drawbacks in practical applications.

2. Features and Benefits of INT8 Quantization
(1) INT8 quantization converts model weights and activations from high-
precision formats (e.g., FP32 or FP16) into 8-bit integers.
(2) This conversion reduces memory usage and dramatically lowers
computational load — a critical optimization for embedded or edge
deployment.

3. Hardware Support and Use Cases
(1) Many edge-Al processors (e.g., Arm® Ethos™ NPUs) are designed to
accelerate fully quantized INT8 inference workloads.
(2) Deploying INT8 models on such platforms unleashes their full
performance potential while remaining resource efficient.

(4) Types of Quantization and Detailed Explanation
(1) Full Integer Quantization

Definition: Converts all weights and activations into integers. All
computations are performed in integer space.

-45 -



Advantages:

a. Significantly reduces model size.
b. Ideal forembedded systems, enhancing speed and efficiency.

Use Case: All examples in this tutorial use full integer quantization to
demonstrate its benefits on hardware.

(2) Dynamic Range Quantization

Definition: Converts float weights to int during inference, while some
parameters (e.g., initialization) remain float.

Advantages:

a. Easytoimplement and quick to test.
b. Good for low-performance gain scenarios.

Trade-off: Slightly lower accuracy than full integer quantization.

(3) Hybrid Quantization

Definition: Part of the model remains in floating-point, while other parts are
quantized.

Advantages:

a. Useful when some layers require floating-point precision.
b. Balances accuracy with performance and memory efficiency.

Use Case: Appropriate for models with high accuracy demands that still
need compression.

(5) Quantization Workflow

-46 -



Quantization involves several steps to reduce memory and compute load while
preserving inference accuracy and stability:

(1) Prepare a Floating-Point Model
a. Aftertraining, export your FP32 model (e.g., TensorFlow SavedModel).
b. This full-precision baseline is used for accurate conversion.

(2) Calibration Dataset
a. Use arepresentative dataset to simulate real-world usage.
b. Proper calibration ensures inference accuracy is preserved post-
quantization.

(8) Run Quantization Tool
a. Use tools like TensorFlow Lite Converter to apply full integer
quantization.
b. This tool transforms weights, biases, and activations to INT8
automatically.

(4) Export as TFLite
a. The quantized modelis saved as a .tflite file.
b. It is highly optimized and ready for deployment on edge/embedded
platforms.

3.4 Vela Compiler (NPU Acceleration)

During the TinyML training workflow, the compiled model goes through the
following process:

Model

‘ TinyML Training | Lightweight model
f/m‘- Pretrained TensorFlow Lite ] TFL flatbuffer file

} "\ Framework

/_
(o]

g PyTorch \ I Tt .

©{ Framework )
'\ (Option) |

Converter @ ﬁ

Vela compiler

INT8 Quantization

Figure 23: Training Workflow Diagram

-47 -



3.4.1 Introduction to Vela

Vela is a neural network model compiler specifically designed for the Arm®
Ethos™-U series Neural Processing Unit (NPU). It converts TensorFlow Lite models
into optimized forms for execution on embedded systems that include Ethos™-U

NPUs.
m v
— _ . —
[ £(<): o)
O
Trained Model . —* —
T Compile Optimized model Run application on
TensorFlow integrated with target hardware
application =
Vela
Figure 24: Vela Compilation Flow
1. Core Functions:

(1) Optimizes TensorFlow Lite Models into Efficient TFLite Files
a. Vela restructures models to fit embedded system constraints,
trimming and optimizing layers to reduce memory usage and
computational load.
b. This ensures the model is deployable and performant on low-resource
devices.
(2) Offloads Compatible Operations to the Ethos™-U NPU
a. Vela analyzes the model graph and automatically maps supported
operators to the NPU.
b. This accelerates inference significantly by leveraging hardware-level
parallelism.
(8) Falls Back to Cortex®-M CPUs with CMSIS-NN for Unsupported Ops
a. Operations that can’t be handled by the NPU are executed on the
Cortex®-M CPU.
b. These CPU-executed ops are optimized using the CMSIS-NN library
provided by Arm®, ensuring high efficiency even on fallback paths.
(4) Memory Access Optimization and Instruction Flow Optimization
a. Vela optimizes how the model accesses memory, minimizing latency
from memory bottlenecks.

-48 -



b. It also refines the instruction stream for faster execution, improving
overall model performance at runtime.

3.4.2 Vela Environment and Extensions

The detailed list of supported TensorFlow and Python versions for ethos-u-vela
can be found at:

https://pypi.org/project/ethos-u-vela/

1. Runtime Environment:

ethos-u-vela runs on both Linux and Windows 10 operating systems, making it
easy to deploy across major desktop platforms for model optimization tasks.

2. Embedded Deployment Capabilities:

ethos-u-vela is designed to enable efficient model compilation and optimization
for embedded systems. It empowers developers to deploy deep learning
models—especially those optimized for Arm® Ethos™-U NPUs—in a more efficient
and hardware-accelerated way. This translates into significant performance
improvements for inference at the edge.

3.4.3 Vela Command Overview

1. Common CLI Commands:
(1) Compile for Specific Ethos™-U NPU:

$ vela --accelerator-config ethos-u55-256
helmet_quantized_ .tflite

Explanation: This command compiles and optimizes the model
helmet_quantized_.tflite for the ethos-u55-256 configuration, ensuring it
runs efficiently on that specific NPU.

(2) Optimize for Minimal Peak SRAM Usage:

$ vela --optimise Size my_model.tflite

-49 -


https://pypi.org/project/ethos-u-vela/

Explanation: This command minimizes the peak SRAM usage of
my_model.tflite, which is ideal for deployment on memory-constrained
embedded devices.

Optimize for Maximum Performance:
$ vela --optimise Performance my model.tflite

Explanation: This focuses on maximizing inference speed. It is best suited
for systems with adequate hardware resources where performance is a
higher priority than memory footprint.

(8) Constrain Performance Optimization Within Memory Limits:

$ vela --optimise Performance --arena-cache-size 300000
my_model.tflite

Explanation: This command optimizes my_model.tflite for performance
while keeping within a strict memory constraint of 300,000 bytes. It
ensures the model remains performant even under limited memory
availability.

3.4.4 Vela Compilation Results

1. Command:

$ vela --accelerator-config ethos-u55-256
helmet_quantized_ .tflite

Explanation: In this command, ethos-u55-256 specifies the NPU model and its
MAC configuration, while helmet_quantized_.tflite is the input model for
compilation. The default optimization setting is used (focused on
performance), ensuring the model is tuned for peak execution efficiency on
the target NPU.

idth
agh bandwidth

lSe d

ch lp TFlagh nged

-50-



Figure 25: Output Results

2. Analysis:
(1) 71.2% of the model's operations are offloaded to the NPU, indicating that
the NPU handles the majority of the computational workload.
(2) 28.8% of the operations are executed by the CPU. These may include
operations unsupported by the NPU or non-accelerable functions.

3. Summary:

After compilation with Vela, a significant portion (71.2%) of computation is
accelerated by the NPU, resulting in a majorimprovement in inference speed and
efficiency. The remaining 28.8% is handled by the CPU, ensuring compatibility and
maintaining performance where the NPU lacks support. This hybrid strategy
allows for an optimal balance between speed and flexibility on embedded
platforms.

3.4.5 YOLOX-Nano Model Fragment Visualization

After Vela Compilation

Before Vela Compilation

[ serving_default_images:0 ]

1=2320=320%3

1=2100=11

[_Partitiunedf:all:ﬂ_]

Figure 26: Visualization of Model Segments

This diagram illustrates how the computational graph of the YOLOX-Nano model
changes before and after being compiled with Vela.

1. Before Compilation:

-51-



In the original version executed on the CPU, a Concatenation operation is
present. This operation requires extra memory read/write steps, which
negatively affect runtime performance. Performing concatenation on the CPU
adds a load to SRAM (Static Random-Access Memory), slowing down
inference—especially when running large models or deploying on memory-
constrained embedded systems.

2. After Vela Compilation:

Once compiled using the Arm® Ethos™-U NPU, the model structure is
optimized, eliminating the need for explicit concatenation.

The Ethos™-U NPU is better suited to handle sliced, smaller tensors, which
helps minimize data shuffling and improves runtime performance.

The NPU handles more of the computational load directly, and the optimized
graph no longer relies on inefficient concatenation steps.

As shown in the figure, the NPU can now directly process tensors without
memory-heavy concatenation, reducing memory bandwidth use and
speeding up inference.

3. Summary:

By compiling the YOLOX-Nano model with Vela, previously CPU-dependent
concatenation operations are removed and replaced with more efficient NPU
execution.

This significantly improves inference performance on embedded systems,
reduces memory bandwidth consumption, and shortens runtime.

Vela's optimization allows the NPU to handle more computation and reduces
unnecessary memory transfers—critical for achieving high efficiency on
resource-limited edge platforms.

3.5 Configuring Hardware and Software with C Language

The sample project for object detection, ObjectDetection_FreeRTOS_yoloxn, is
available at: https://github.com/OpenNuvoton/M55M1-eBook-Sample-Code

Nuvoton will continue updating the official BSP repository, which can be found
here: https://github.com/OpenNuvoton/M55M1BSP

-52-


https://github.com/OpenNuvoton/M55M1-eBook-Sample-Code
https://github.com/OpenNuvoton/M55M1BSP

This chapter explains the location and role of various driver configurations and
files used in the object detection example (see Figure 29).

3.5.1 M55M1BSP

1. Document Directory (M55M1BSP/Document)
(1) CMSIS.html: Documentation on the CMSIS directory contents.
(2) NuMicro M55M1 Series Driver Reference Guide.chm: CHM help file
explaining the driver functions in the M55M1 BSP.
(3) Revision History.pdf: Describes the update history of the M55M1 BSP.

B cmsIS.html Chrome HTML D... 1KB
E* NuMicro M55M1 Series Driver Referen.. 2024/5/: 5207 HTML sRER... 89,120 KB

a Revision History.pdf 2024/5/: 243 PDF Document 114 KB

Figure 27: Document Folder Structure

2. Library Directory (M55M1BSP/Library)

(1) CMSIS: CMSIS (Cortex® Microcontroller Software Interface Standard)
related definitions and files.

(2) Commu: Utility functions for communication protocols, such as
XMODEM.

(8) CryptoAccelerator: Source code for hardware acceleration of
cryptographic functions (MbedTLS-based).

(4) Device: Device headers following CMSIS conventions.

(5) JpegAcceleratorLib: SIMD-optimized accelerator and headers for use with
libjpeg.

(6) PowerDeliveryLib: Power Delivery libraries and headers supporting dual-
role (source and sink) functionality.

(7) SmartcardLib: Smart card protocol support libraries and headers.

(8) StdDriver: Source and header files for all peripheral drivers.

(9) UsbHostLib: Source code for USB Host library support.

-53-



.j-

Hilf

Commu

i

C r'_')-"p'tDAL'::[::Efl erator

i

Device

i

JpegAcceleratorLib 2( /1 13:09

i

PowerDeliveryLib 2024/8/1 13:09

i

SmartcardLib

i

StdDriver

UsbHostLib

i

Figure 28: Library Folder Structure

Device
GCC
IR,
KEIL
Model
MPU
Pattern

ProfilerCounter

[ T s T s R s T o
[T o T L B S R )

¢| Boardinit.cpp 4 KB
¢| Boardinithpp KB
¢| DetectionResult hpp 2 KB
¢ DetectorPostProcessing.cpp OKE
o| DetectorPostProcessing hpp 5KE
o] InferenceTaskcpp 4 KB
o] InferenceTask hpp 2 KB
¢ main.cpp 21 KB
€] mpu_config_M55M1.h 0 KB

Figure 29: Folder and Source Code Overview of the Object Detection Example

3.5.2 Display Component Overview

e Display.c
Responsible for the core display functionality.
Its primary roles include:

o Initializing the LCD hardware (including EBI interface configuration and
multi-function pin setup)
Providing rectangle fill functions for rendering image processing results
Supporting character display and delay operations

-54 -



Use case examples: Rendering bounding boxes for object detection results
and showing system status (e.g., FPS or model name) on-screen.

Font8_16.c
Handles font definitions.

o Defines 8x16 dot-matrix font data for LCD character display
o Provides character sets in array format
o Worksin conjunction with Display_PutText() to output text to the screen

LCD_FSA506.c
Implements the LCD driver logic.

o Sends commands and data to the LCD over the EBI interface
o Controls column and page address setup (e.g., fsa506_set_column())
o Initialization includes:

= Hardware reset

= Panel size configuration

= Clock format setup

=  TFT output timing configuration

LCD.h
Header file defining the LCD driver interface.

o Declares structures and configurations related to LCD functionality
o Providesthe S_LCD_INFO structure, which includes:

= |nitialization routines

= Function pointers for display operations

3.5.3 HyperRAM Component Overview:

hyperram_code.c

This file implements the core functionality for HyperRAM operations, including:

-55-



o O O O

Erase

Data write

Delay calibration

Optional PLL calibration for tuning read timing

Function Details:

o

Erase Logic:

Uses HyperRAM_Erase() to iteratively clear blocks of memory, ensuring
the erased data is set to zero.

PLL Calibration:

Performs delay step adjustment to ensure reliable data transfer by
tuning internal read timing.

Default Configuration:

Sets up chip select behavior and read/write access timing for proper
HyperRAM interface operation.

3.5.4 ImageSensor Component Overview:

ImageSensor.c

This is the main module for handling the image sensor. Its core functions

include:

o O O O

Initializing the image sensor and the CCAP (Camera Capture) module
Configuring image output formats such as YUV422 or RGB565
Implementing image capture and cropping features

Acquiring input images from the sensor for inference use

3.5.5 KEIL Configuration Analysis:

M55M1.scatter

This is the memory layout configuration file, used to define the program's

memory allocation—covering code segments, data sections, and stack

regions.

It also defines Flash and RAM partitioning, as shown in Figure 30.

-56 -



Its primary purpose is to guide the Linker on how to place the program in the
target hardware's memory.

131 APP IMAGE FLASH START FLASH SIZE

132 {

133 ; Flash 2 MB

134 rom exec FLASH START FLASH SIZE

135 {

136 *.0 (RESET, +First)

137 * (InRoot$5Sections)

138 ; Make sure reset handler ends up in root segment
139 startup M55Ml.o

140 JBNY (+RO)

141 ohALUNLCAThirdPartyheflite micro\Lib\tflu.lib (.init array)
1

rom netwrok executor +0

{

I
F
L [k

y LN e

SN A Thirdpartyhtflite micro\Lib\tflu.lib (+RO)
146 ethosu *.o

Figure 30: Code defining Flash and RAM partitioning in M55M1.scatter

HyperRAM:

e Atype of external high-speed RAM used for:
o Storing intermediate computation results
o Temporary data

e Commonlyusedin:
o Neural network processing
o Graphicsrendering
e Advantages:
o Large capacity (32MB or more)
o Cost-effective via SPl interface
e Disadvantages:
o Slower read speed compared to internal SRAM
e See Figure 31 for HyperRAM address definition in the scatter file.

187 $#if O
188 HYPERRAM SPIM0O START UNINIT SPIMO SIZE
{

T W0 WD WD WD WD WD WD WD WD WD D
- 2 L ]

; Place tensor arena in SRAM if we do not have a fast memory area
.BNY (.bss.NoInit.activation buf sram)

t t [l t
SRV S I
[

HYPERRAM SPIM1 START UNINIT SPIM1 SIZE
{

T LR

; Place tensor arena in SRAM if we do not have a fast memory area
.BNY (.bss.NoInit.activation buf sram)

W oo

}
#endif

M

Figure 31: Code defining HyperRAM address in M55M1.scatter

-57 -



HyperFlash:

Atype of high-speed external Flash used for:

o Storing program code

o Read-only data (e.g., images, audio)

Common use

Advantages:

: Firmware or static data storage

o Large capacity (64MB or more)

o Fastlo

ading via SPl interface

Disadvantages:

o Slow write speed

See Figure 32

g #de
5 #de

L Lo

for HyperFlash address definition in the scatter file.

fine FLASH START Ox00100000
fine FLESH_SIZE Ox00200000

Figure 32: Code defining HyperFlash address in M55M1.scatter

SRAM:

[ Y S T o T e e |

A volatile memory—contents are lost when power is removed

Main advanta
o Fastes

ge:
t access speed among memory types

o No need for refresh cycles like DRAM

Main limitatio
o Lowst
See Figure 33

SRAMO1
{

n:
orage capacity
for the SRAM address mapping code in the scatter file.

2 SREM012_ START SREMO1Z2 SIZE

ABNY1 (Lbss.sram.data)
; Place tensor arena in SRAM if we do not have a fast memory area
.BNY (.bss.NoInit.activation buf sram)

}

Figure 33: Code defining SRAM address in M55M1.scatter

3.5.6 MODEL Folder Overview and Analysis:

Label Module

-58 -



Demonstrates how labels are loaded from a static array into a dynamic
container.

Anillustration shows the label structure and how it's applied during inference.
o Labels.cpp:

Containsthe list of labels used by the object detection model, enabling
human-readable classification of inference results.

YOLO Model Management

Explains how model data is integrated into the inference process, including a
diagram illustrating model initialization and runtime support.

o YoloXnanoNu.cpp:

Encapsulates the YOLOX-Nano inference model, including all setup
and execution routines.

o yolox_nano_*.tflite.cc:

These files contain quantized YOLOX-Nano model data in .tflite format,
designed for execution on NPU (Neural Processing Unit) environments.

Integration of Labels with Inference

Details how the label module integrates with the YOLO model to generate
human-readable inference results.

o Labels.hpp:

Defines the interface for external access to the label module,
supporting label retrieval and management during object detection.

3.5.7 NPU Folder Overview

CPU Cache Management Module

Describes the functionality of ethosu_cpu_cache, which ensures data
consistency between the NPU and CPU during shared memory operations.

NPU Initialization Module
Details the initialization steps for ethosu_npu_init, with diagrams showing

interrupt handling and memory configuration during NPU startup.

-59-



Performance Profiling Module

Uses visual charts to show how performance counters (e.g., idle cycles, data
traffic) capture the runtime state of the NPU.

Also explains how ethosu_profiler supports performance optimization.
Memory Configuration Module

Includes diagrams illustrating memory partition structures, showing how
cache and buffer regions are laid out.

Highlights their impact on performance and data access efficiency.

3.6 Program Development and Flashing on the
Development Board

3.6.1 Integrated Development Environment — Arm® Keil MDK
pVision 5

Arm® Keil MDK pVision 5 is an integrated development environment (IDE)
specifically designed for embedded development, particularly for applications
based on Arm® Cortex®-M microcontrollers.

1.

2.

Software Features

(1) Integrated Workflow: uVision offers a full development flow—from editing
and compiling to debugging—all within a single interface.

(2) C/C++ Compiler: Utilizes the high-performance Arm® Compiler to generate
optimized code, reducing binary size and enhancing execution efficiency.

(3) Rich Debugging Tools:

Supports real-time tracing, execution analysis, and hardware debugging.
Includes a built-in simulator for testing code without physical hardware.

Available Editions

(1) Community Edition: Free for developers, suitable for learning or small-
scale project development.

(2) Keil MDK Nuvoton Edition: Provided free by Nuvoton Technology for
commercial development.

(Learn more: Keil MDK Nuvoton Edition — Full Cortex®-M — Nuvoton)

-60 -


https://www.nuvoton.com/tool-and-software/ide-and-compiler/keil-mdk-nuvoton-edition/

3. Main Application Areas
(1) Internet of Things (loT): Development of low-power, high-performance loT
devices.
(2) Consumer Electronics: Such as appliance controllers and handheld
devices.
(3) Industrial Control: Embedded systems for machine control and monitoring.
(4) Medical Electronics: Includes wearable and monitoring devices.

4. Feature Overview
(1) Device Tree Support: Simplifies chip and peripheral configuration and
auto-generates config code.
(2) Pack Management: Allows developers to download and manage Device
Family Packs (DFP) for various microcontrollers.

RTOS Support: Integrates Keil RTX Real-Time Operating System, enabling
efficient multitasking application development.

3.6.2 Development Workflow

1. Create a New Project

Before flashing, you need to create a new project in Keil pVision. Follow these
steps:

(1) Launch Keil pVision

Open the Keil pVision IDE. Ensure it's properly installed and the correct
version.

(2) Open the “Project” Menu

Click the Project tab from the top menu bar.

-61-



E pvision [Mon-Commercial Use License]
File Edit View  Project Flash Debug Peripherals Tools SVCS  Window Help

1 ﬁ . ﬂ | Mew pVision Project...
| Mew Multi-Project Waorkspace...

Open Project...
Project
Close Project

Import
Export
Manage

Select Device for Target ...
Remove [tem

S Options.

Clean Targets
Euild Target
Rebuild all target files

i=] Project | €3 500 Batch Build

Build Qutput Batch Setup...
Temme b

Figure 34: Open Project Menu

(3) Select “New pVision Project”

From the dropdown, select New uVision Project to start creating a new
project.

E p¥ision [Non-Commercial Use License]
File Edit View Project Flash Debug Peripherals Tools SVCS  Window  Help
]ﬁ . §| Mew pVision Project...
Mew Multi-Project Workspace..,
Cpen Project...

Project
Close Project

Impart
Export

Manage

Select Device for Target ..,
Remove Item

% Options...

Clean Targets
Build Target
Rebuild all target files

I=] Project @EGD Batch Build

Build Output Batch Setup...
Tramelaba

-62 -



Figure 35: Select New uVision Project

(4) Name Your Project and Set Save Path

In the dialog box that pops up, give your project a name and choose a
meaningful directory path to save it.

(5) Select Target Hardware

After naming, select the appropriate MCU or processor from the device list,
e.g., Arm® Cortex®-M55.

2. Project Naming

"]
File Edit View Project Flash Debug Peripherals Tools SVCS \Window Help
& d| \ \ I | @ la-| MI=EE)
- | | M|
Project I Create New Project x
<« MSSM1BSP-3.00.001 > SampleCode » NuEdgeWise » tset » KEIL v O ESKEL »,
FRENRK =R ° ) |
sigo
KEIL
KEIL
B project [@Feoors | 1
@ Model
Build Output £y
[5= OneD
@ OneD
(=]
o &5

BESEN): [helmet_deteet -

FERAM: | Project Files (“uvproj; *uvprojx) o

[ca num scrL 01 |

Figure 36: Naming project

(1) Enter the Project Name

In the "Create New Project" dialog box, fill in the File Name field.
(2) Choose Save Location

Navigate to your preferred directory to store the project files.
(3) Confirm and Save

Click Save to complete naming and storing the new project.

-63 -



(4) Select MCU Model

Users\USER\Desktop\ML_M55M1_SampleCode-master\M55M18$P-3.00.001\SampleCode\NuEdgeWise\tset\KEIL\helmet_detcet uvpraj - uVision [Non-Commercial Use License

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

AP B« S
7| Select Device for Target Target_1"...
S (2 @ - 2| W Target B x| ol
e o |
[Software Packs ~l
Vendor:  Nuvoton
Device:  MSSMIHZLIAE
Toolset:  ARM
Search:
Description:
[ ——)
© @ Al Semiconductor | 4 | [The Nubicro M55H1 series 322 microcontroller.
¢ e
—i
LN
i =
EProject | @ 500xs | {} Functions | 0, Templates ® % NPCX Family
Build Output 1 @ %% NuMicro MO Family | =
® % NuMicro M0+ Family 45 Nobicro M23 Family
® %% NuMicro M23 Family 1o
@© %5 NuMicro M4 Family 513 Nubicro M55 Family
5% NuMicoMsSFamiy =] &% soan 2
a .
Coml || 5% wiceFamty
a1 i
oK Camcel | Help

CAP NUM SCRL O'

Figure 37: Select Microcontroller (select M55M1)

After saving, Keil will open the Select Device for Target dialog.

(5) Expand Nuvoton from the list.
(6) Go to NuMicro M55 Family, then select M55M1H2LJAE.
(7) Click OKto confirm.

3. Select and Configure Software Components

-64 -




K Manage Run-Time Enviranment X

Software Component Sel. Variant Vendor Version Description

o @ CMSIS Cortex Microcontroller Software Interface Components

] @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
¥ @ CMSI5-Compiler Compiler Specific Interfaces

£ @ CMSIS-View Debugger visualization of software events and statistics

5 Device Startup, Systemn Setup

o File System MDK-Plus | Keil File Access on various storage devices

[+ @ Metwork MDK-Plus e Keil IPv4 Metworking using Ethernet or Serial protocols

¥ @ UsB MDK-Plus ~ | Keil USB Communication with various device classes

< i
Validation Output Description

Rewmlve Select Packs Detadle Cancel Help

Figure 38: Select and configure required packages on the project

(1) Open “Manage Run-Time Environment”

Go to the Project menu > Manage Run-Time Environment.
(2) Choose Required Components

Select components like:

CMSIS: Basic MCU support.
Compiler: Arm® compiler.
RTOS (FreeRTOS): For multitasking support.
o USB/Network: If USB or networking is needed.
(8) Review Component Details

o O O

On the right panel, check version, vendor, and feature description to
ensure compatibility.

(4) Click OK to Apply

After configuration, click OK to save and load the components.

-65-




KA C\Users\USER\Desktop\ML_M55M1_SampleCode-master\M55M1BSP-3.00.001\SampleCode\NuEdgeWise\tset\KEIL\helmet_detcet.uvprojx - pVision [Non-Commercial Use License

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NB A » DA e | rRRAR|EEEG® Ha s Q-0 & @]}
(2 &8 & | 98] neimet_detect J’X\ L ]

© 4% Project: helmet_detcet
= %3 helmet_detect

= I Model
Labels.
LB o Honase s
0] P j | ions | Books | Project InfolLayes |
[Project Targets: 7/ | # | | 2.

Add Files to Group 'Model"

SBORQ: ||| Model - «e®merm@-

z% - S2EH FERS

< Labels.cpp /23 T4 04.05 c+
e quant oy 2024/9/3 L= 1216 Cs
20t vala il 024/9/10 T4 12.02

3. = = ace
Setas Clseck Taet - j c: v
WEEHN):  [Fyolox nano_nu_hg_fullinteger_quant vela it
Cancel aRFEM:  [Alfles(n) = Close

Figure 39: Add model, hardware configuration to the project

4. Add Files to the Project
(1) Open “Add Files” Dialog

In the project pane, click Add Files to open the file manager.
(2) Choose File Group

Select or create a Group (e.g., Model, Drivers) for better organization.
(3) Add Files to Group

Click Add Files...

Selectrequired files such as:

o Labels.cpp (label definitions)
o YOLO modelfiles (e.g., yolox_nano_*tflite.cc)
o Other source files (e.g., YoloXNanoNu.cpp)

Click Add > OK

5. Verify Project Structure

Ensure the files appear in the project tree and compile correctly.

- 66 -



B C\Users\USER) Desktop\ML_M55M1_SampleCode-master\M55M1BSP-3.00.001'SampleCode' NuE dgeWise\ObjectDetection_FreeRTOS yoloxnnmKEIL\ObjectDetection_FreeRTOS yoloxn
File Edit View Project Flash Debug Peripherals Tools SVCS  Window Help

Sd@ L@l - L EEE | @ JRe A-|lec @B A
®EE e %% | objectpetection_Freerns] A5 | db L
Project a g _] tabelscpp ] voloknanoMucpp | _] yolox_nano_nu_hg_full_integer_quant_velstflite.cc
= “i3 Project: ObjectDetection_FreeRTOS_yoloxn I= 1
&5 ObjectDetection_FreeRTOS yoloxn 2 buzes.hpp"
503 CMsis <
4
# L Dviver = 3
s 1
=1 &3 Application &
% 1] Boardinit.cpp 7 static const char *labelsVec(] LABELS ATTRIBUIE =
w ] maincpp L= 1
9 .
# _] DetectorPostProcessing.cpp 10
% _] InferenceTask.cpp 11
1 mpu_config_M55M1.h 12
4 Cd Lib E g
- 5 Model is |
o] Labels.cop 16 bool GetLabelsVector (std::vector<std::string> slabels)
® QIoANENSIU.CPP 17 Ed
& ] yolox_nano_nu_hg_full_integer_quant_velafiite.cc 18 conatexpr size & labelsSz = 11:
19 labels.cleaz ()
= 5 Pattern 20
o
4 _] InputFiles.cpp 21 if (!labelssSz)
@ [ dinnercpp 22 {
& ] WIN_20240531_13_48_13_Pro_jpg.cc 25 | Teemm falzes
300 AmMLABI : ’
4 NPU gl 26 labels.reserve (labelsSz)
# . ProfilerCounter 27
i Device 28 | for (size T 1 = 07 1 < labelsSz; ++1)
o0 1 | 29 I
ypErram_code.c 30 labels.emplace_back(labelsVec[i]);
% _] ImageSensor.c 31 ¥
7] Sensor HM10S5.c 32 |
_<| L4 33 return true;
El Project |43 {) Funct 0, . <
Busildd Ot

Figure 40: If project has been created, just rename labels

6. Modify Existing Project Labels (Optional)
Locate Labels.cpp
In the project tree: Lib > Model > Labels.cpp
7. EditLabel Array

Modify the labelsVec[] array with your custom labels.

char *labelsVec[] LABELS_ATTRIBUTE

"Head",
"Helmet",
"Person"

Figure 41: The array defined for labels
8. Save and Rebuild

Click Save, then Build to apply changes.

-67 -



a

File €dt View Project Flash Debug Peripherals Tools SVCS Window MHeip

R~ - a9 - » E iE / & vaAs Q-|e S a-|B-| A
S e %% | Objectoetection FreerTi E L ]
Project 1 _) labelscpp ) voloXnanoNu.cpp | ) yolox_nano_nu_hg full integer_quant vela tfiite.cc
= %3 Project: ObjectDetection FreeRTOS yoloxn . 1
&5 ObjectDetection_FreeRTOS_yoloxn 2 e
o3 cmsis 3
882 Dover 2
= & Application P

# ) Boardinit.cpp
s ) maincpp
4 ] DetectorPostProcessing.cpp

atic const char *labelsVec[] LABELS ATTRIBUTE =

) InferenceTask cpp Manage Project tems X

1
_) mpu_config_MS5M1.h 12
563 b 13 Fropect Iems | Folders/Bxdensions | Books | Project InfoLayer |
14
(S Model =
# ) Labels.cpp 16 etLabelsVectod
7

# ) YoloXnanoNu.cpp Project Targets 11X 4 ¥ |Gous X 2+ ¥ A X+ 4

) yolox_nano_nu_hg_full_integer_quant_vela tiite.cc 18 SRCTETR S Ctieci DetectionFreeRT0S ok JIEH Labe cop_
> 15 labels.cleac(); Driver
i Sattem 20 Fokcatin s ol an

0
# ) Inputfiles.cpp 1 if (!labelssz) 3
4 ] dinner.cpp 2 {
WIN 202405 2 oML 2
© ) WIN_20240531_13 48_13_Pro_jpg.cc -: .
4 3 ArmMLApI :5‘ | ProflerCounter
% 3 NPU = 26 Device
@ [ ProfilerCounter 27
& Device fz
# ) hypemam_code.c ;0
5 ) ImageSenser.c 31
# 1) Sensor HM1055.c 32 }

< Q3 33 return true;

i project [@scors | () s 0, < | Set a3 Currert Target Add Fles

or Sensor_HM108S.c...

creating list £il
creating list £

Figure 42: Custom Weights and Config Files

9. Add Custom Weights and Config Files
(1) Open Manage Project Items
Click Manage Project Items in the toolbar.
(2) Create New Group (if needed)
Click Add Group to organize new files.

Custom model weights (e.g., yolox_nano_nu_hg full_integer_quant)

Hardware config files (e.g., audio drivers, sensor configs)

10. Verify Structure

Ensure all new files appear and are structured properly in the project tree.

3.6.3 Compile and Flash the Program to the Board

1. Build the Project
(1) Click Build Target to compile the project.
(2) Check the Build Output pane: 0 Error(s), 0 Warning(s) confirms success.

2. Generate Flashable Binary

-68 -



4.

The build produces .bin or .hex
(e.g., .\release\ObjectDetection_FreeRTOS_yoloxn.bin)

Flash the Binary to the Board

(1) Click Flash Download

(2) Ensure your board is connected and Nu-Link selected
(3) Click Program to flash the binary

(4) DO NOT disconnect the board during flashing

Verify Execution

(1) After flashing, the board auto-executes the program
(2) Use Keil's Debug or serial tools to check runtime behavior

-69 -

files



1 Smart Factory 1 — Safety Helmet Detection

1.1 Use Case Overview — Safety Helmet Wearing
Detection

This use case utilizes the safety-helmet-dataset from the open-source Roboflow
dataset collection. The YOLOX-Nano model is trained under the PyTorch
framework. After training, the model is converted to the TensorFlow Lite format—
compatible with the development board—via ONNX. To meet the model size
constraints of the board, Full-INT8 quantization is applied for model optimization.

The model is further optimized using the Vela compiler, which transfers all
operations originally assigned to the CPU to the NPU (Neural Processing Unit) for
execution. Finally, the optimized system is programmed into the Nuvoton M55M1
development board using the Keil toolchain, successfully achieving a real-time,
efficient, and power-saving safety helmet detection system.

Figure: Safety Helmet Wearing Detection

Introduction to Nuvoton Development Board and Practical Applications

1. High-Efficiency Hardware Performance
(1) Cortex®-M55 and Ethos™-U55 microNPU

-70 -



a. Capable of achieving processing speeds up to 220 MHz, enabling
neural network inference.
b. Support for Full-INT8 quantization:

After applying Full-INT8 model quantization, computation efficiency is
significantly improved. At the same time, memory usage and
computational resource requirements are greatly reduced, enabling
more efficient real-time predictions.

2. Real-Time Performance and Low Latency
(1) With the hardware acceleration of Ethos™-U55 and the high throughput of
Cortex®-M55, the system achieves an excellent balance between real-time

performance and detection accuracy.

3. Rich Expansion Interfaces
(1) The M55M1 board provides multiple interfaces, such as the CMOS sensor
interface (CCAP) and TFT-LCD display interface, allowing integration of
cameras and displays for image capture and on-device inference.

4. Practical Applications in Safety Helmet Detection
(1) Factory Scenario:

In a factory environment, there are numerous operating machines.
Wearing a safety helmet protects workers’ heads from falling or flying
objects and prevents injuries from protruding or moving equipment.
Therefore, an inspection checkpoint is required at the factory entrance to
ensure workers are wearing helmets as per safety regulations.

&
WARNING

Found a person was not wearing
a helmet and raised the alarm

Figure: Person not wearing a safety helmet — Paula Bronstein/Getty Images

5. Project Objectives

-71 -



This project aims to build a high-performance, real-time safety helmet
detection system using the Nuvoton NuMaker-X-M55M1 development board.
It leverages deep learning models to accurately detect helmet-wearing status
and trigger alarms.

(1) Rapid Detection of Violations:

Use machine learning to perform real-time checks on individuals entering
factory zones, ensuring those without helmets cannot access hazardous
areas.

(2) High-Accuracy Recognition:

Through optimized models and hardware acceleration, the system delivers
high-precision helmet detection, reducing both false alarms and missed
detections.

(8) Low Power Consumption and Stability:

The low-power design of the M55M1 development board ensures long-
term, stable operation, suitable for 24/7 factory surveillance.

(4) Easy Deployment and Scalability:

The system is designed for practical industrial deployment and can
integrate with other safety monitoring systems.

Project Results

Using the Nuvoton M55M1 development board, the safety helmet detection
system achieved the following results:

(1) Real-Time Helmet Detection:

The system can accurately identify helmet-wearing status and display a
“No Helmet” alert to immediately notify on-site managers.

(2) High Detection Accuracy:

In current tests with 500 test images, the system achieved an overall
accuracy of 95%.

(3) Visual Display:

Detection results, including personnel images and helmet status, are
presented in real time via the M55M1’s display module.

(4) Optimized Model Performance:

-72 -



By combining TinyML with Full-INT8 compression techniques, the system
effectively reduces computational load and enhances model efficiency on
edge devices.

1.2 Dataset and Al Model Training

Dataset Introduction: Safety Helmet Detection Dataset (safety-helmet-dataset
from Roboflow)

1. Dataset Preparation
(1) Data Collection

a. This dataset originates from the "safety-helmet-dataset" on the
Roboflow platform. It is specifically designed for helmet-wearing
detection tasks and includes classifications such as wearing a helmet
and not wearing a helmet.

b. The data sources may include surveillance video recordings from
factories or images captured in simulated environments to ensure
diverse scenes and lighting conditions.

c. Stepsto Obtain the Dataset from Roboflow:

Step 1: Visit the Roboflow official website: https://roboflow.com

& c 25 roboflow.com w

1. Click Product

roboflow Solutions v Resources ¥  Pricing Docs Blog Sign In ‘Bookademol Cet Started

PLATFORM
2. Click Universe

Eve [ d to build and deploy
on applications.

| atasets, train models, and deploy to production.

Jraly L Request a Demo

-  Workflows
2

Figure: Roboflow homepage

Step 2: Click to enter the open dataset library

-73-



https://roboflow.com/

roboflow Products v Solutions v Resources v Pricing  Docs  Blog signin | Bookademo = [RECIRICHCT]

The Largest Resource of
Computer Vision
Datasets and Pre-Trained

Models

Datasets Images Pre-trained Models

750k+ 575m+ 175k+

Explore Universe ‘

Figure: Dataset library

Step 3: Search for the desired dataset

£ Explore the Roboflow Universe

The world's largest collection of open source computer vision datasets and APIs.

@ 500 MILLTON+ TMAGES B 1,000,000+ DATASETS X 250,000+ FINE-TUNED MODELS
Enter the text to search for the item you want

| 3

AllProjects  Object Detection  Classification  Instance Segmentation  Keypoint Detection ~ Semantic Segmentation  Multimodal

AllModels ~ RF-DETR  YOLOVI2  YOLOVIl  YOLOVI0O  YOLOV9  YOLO-NAS  YOLOVE  YOLOVS

Q© Favorite Projects

o -
i

Object Detection Model yolovBn yolov8 snap Object Detection Model snap rfdetr rfdetr-base Object Detection  Modi yoloviin
rock-paper-scissors License Plate Recognition People Detection
by Roboflow by Roboflow Universe Projects by

Figure: Dataset search interface

Step 4: After selecting a project, click "Download Project" to obtain the
dataset

LV L Aa

Ak Click Download Project

safety-heimet-dataset Computer Vision Project m

Figure: Project download page

-74 -



Step 5: Choose the desired annotation format to download the dataset

2024-10-05 4:5pm

Select COCO JSON for Yolox nano

YOLON YOLCWE

Popular Downicad

Pascsl VOC

D00 ¥ 2]
COC0 FE0H YOLD Dasrleried EMIL

Baliamms Coroatokil, J50M gy Formaty

Figure: Format selection interface

. Preprocessing includes converting BGR to RGB, resizing images, and

normalizing image data to a floating-point range of O to 1.
The training and validation datasets for the YOLOX model must comply
with the COCO JSON format.

(2) Data Format

a.

b.

The dataset uses the COCO JSON format, which includes the following

features:

(a) Annotation Standardization: Each image’s labeled objects (e.g.,
helmet presence) are marked using bounding boxes. The
annotation data is stored in JSON files, making it easy to load with
training frameworks.

(b) Extensibility: Supports multi-class annotation and complex scene
descriptions.

The dataset is divided into the following subsets:
(a) Training Set: 5145 images

Used for primary model training and learning.
(b) Validation Set: 1470 images

Used to evaluate model performance during training and avoid
overfitting.

(c) Test Set: 735 images

Independent from the training and validation sets, used for final
evaluation.

(d) Dataset Link:
https://universe.roboflow.com/realdatasetfinish/safety-helmet-

dataset-ep6zc/dataset/1

-75-


https://universe.roboflow.com/realdatasetfinish/safety-helmet-dataset-ep6zc/dataset/1
https://universe.roboflow.com/realdatasetfinish/safety-helmet-dataset-ep6zc/dataset/1

(3) Dataset and Training Environment Setup
a. Installand Set Up Anaconda Environment

(a) Anaconda is a widely used open-source platform for Python and R
programming, ideal for machine learning, data analysis, and
application deployment. It's known as an “all-in-one solution” for
data science.

(b) Developers can conveniently create virtual environments within
Anaconda to isolate project dependencies.

(c) Installing Anaconda is simple. Visit the official site and navigate to
Products > Distribution.

_) ANACONDA SOIulIons Resources Partners Company

Anaconda Hub Professional Services & Learning Pricing

S putt private reg

[ Distribution ] Professional Services Plans and Pricing

Anaconda Learning
Data Science & Al Workbench

Navigator
Notebooks

Package Security Manager

Figure: Anaconda homepage

(d) Click “Skip registration” to proceed without account setup

Distribution

Free Download*

Register to get everything you need to get started on your Provide email to download Distribution

workstation including Cloud Notebooks, Navigator, Al

Assistant, Learning and more. Email Address:

Agree to receive communication from Anaconda regarding relevant content,
products, and services. | understand that | can revoke this consent here at
0 Easily search and install thousands of data science, machine learning, any time.
and Al packages

Q Manage packages and environments from a desktop application or
work from the command line

Q Deploy across hardware and software platforms

Q Distribution installation on Windows, MacOS, or Linux

+Use of Anaconda's Offerings at an organization of more than 200 employees requires a

Figure: Skip registration

-76-



(e) Choose the version that matches your operating system. For this
case, download the Windows version.

Anaconda Installers

- i
a0 .
Mc¢

Windows

Python 3.12 Pytl
W 64-Bit Graphical Installer (912.3M) W B4
In:

WLoaa

Figure: Windows installer

b. Stepsto Set Up the Anaconda Environment
(a) Download YOLOX-TFLITE Project

GitHub repository:
https://github.com/OpenNuvoton/M55M1-eBook-Sample-Code

(b) Create Python Environment
= conda create --name yolox_nu python=3.10
= conda activate yolox_nu
(c) Upgrade pip and setuptools
= python -m pip install --upgrade pip setuptools
(d) Install CUDA, PyTorch, and MMCV
This project uses CUDA 11.8 and Torch 2.0
= python -m pip install torch torchvision
torchaudio --index-url
https://download.pytorch.org/whl/cull8
(e) Install MMCV based on your hardware setup (version 2.0.1)
= python -m pip install mmcv==2.0.1 -f
https://download.openmmlab.com/mmcv/dist/cull8/to
rch2.0/index.html
(f) Install Other Required Packages
Open the requirements.txt in the downloaded directory.
Run the following to install all listed packages:

-77 -


https://github.com/OpenNuvoton/M55M1-eBook-Sample-Code

2.

= python -m pip install --no-input -r
requirements.txt
(g) Install YOLOX
After installing all dependencies, run:
= python setup.py develop

1.3 Model Training Using PyTorch Framework on PC with
Anaconda

Model Selection

(1) Choose a lightweight model suitable for the available hardware resources.
This project selects YOLOX Nano due to its compact model size and
excellent performance.

(2) The model framework uses PyTorch, which supports flexible adjustment of
network architecture and parameters.

Training Process

(1) Splitthe dataset into training and validation sets: 80% for training, 20% for
validation.

(2) Use Adaptive Learning Rate to minimize overfitting.

(3) Apply data augmentation strategies, such as image scaling, cropping, and
enhancements (e.g., rotation, brightness adjustment), to improve
generalization.

(4) Utilize hardware (e.g., GPU) to accelerate the training process and enhance
efficiency.

Training Environment
(1) Hardware: NVIDIA GeForce RTX 3070 Ti

(2) CUDA Version: 11.8

(3) PyTorch Version: 2.0.0

(4) Training Data: 5145 images

(5) Training Parameters: Epoch = 100, Batch size = 32
(6)

6) Training Duration: Approximately 1.5 hours

Training Using Pretrained Model
(1) Configuration File: exps/default/yolox_nano_ti_lite_nu.py
(2) Prepareyourtraining data and organize it as follows in the dataset directory:

-78 -



.github
assets
build
datasets
demo
docker
docs
exps
output
pretrain

pretrained_models

Figure: Dataset directory structure

(3) Dataset format requirements:

datasets/<dataset_name>

|— annotations

| l— <train_annotation json file>

| L <val annotation json file>
|— trainzeiz
L valze17

Figure: Dataset format

(4) Configure dataset path:

# Define yourself dataset path
a_dir = "datasets/COCO"
ain_ann = "train_annotation json_file.json™
"val annotation json file.json”

Figure: dataset path setup

(5) Modify parameters in yolox_nano_ti_lite_nu.py:

Set Classes number
based on dataset

I Set epoch to 100

-79-



Figure: parameter settings

(6) Training command:

python tools/train.py -f <MODEL_CONFIG FILE> -d 1 -b
<BATCH_SIZE> --fpl6 -0 -c <PRETRAIN_MODEL_PATH>

Example:

python tools/train.py -f
exps/default/yolox_nano_ti_lite nu.py -d 1 -b 32 --fpl6 -
0 -C
retrain/tflite_yolox_nano_ti/320_DW/yolox_nano_320 DW_ti_
lite.pth

Parameter Explanation:

o -f: Specifies the model config file
o -d: Device count (e.g., GPU count)
o -b:Batch size
o --fp16: Enables mixed-precision (half float) training
o -0: Enables automatic mixed-precision
o -c: Path to pretrained model
5. Conversion Tools
(1) Use ONNX (Open Neural Network Exchange) to convert the framework,
allowing deployment across diverse environments.
(2) Convert PyTorch model to ONNX with:

python tools/export_onnx.py -f <MODEL_CONFIG_FILE> -c
<TRAINED_ PYTORCH_MODEL> --output-name <ONNX_MODEL_PATH>

Example:

python tools/export_onnx.py -f
exps/default/yolox_nano_ti_lite nu.py -c

YOLOX outputs/yolox_nano_ti lite nu/best_ckpt.pth --
output-name YOLOX_ outputs/ONNX/yolox_nano_nu_helmet.onnx

Parameter Explanation:

o <MODEL_CONFIG_FILE>: Model config file
o <TRAINED_PYTORCH_MODEL>: Trained PyTorch checkpoint
o <ONNX_MODEL_PATH>: Output ONNX modelfile path

6. Model Quantization

-80 -



(1) Quantization is used to compress model parameters (e.g., float — int) to
improve inference efficiency, crucial for resource-constrained edge
devices. This project uses Full-Integer 8 (INT8) quantization.

(2) Generate Calibration Data:

python demo/TFLite/generate_calib_data.py --img-size
<IMG_SIZE> --n-img <NUMBER_IMG> -0 <CALI_DATA FILE> --
img-dir <TRAIN_IMAGE_DIR>

Example:

python demo/TFLite/generate_calib_data.py --img-size 320
320 --n-img 1400 -o
YOLOX_outputs/yolox_nano_ti_lite_nu/calib_data_320x320_n2
00.npy --img-dir datasets/COCO/train2017

Parameter Explanation:

o <IMG_SIZE>: e.g., 320x320

o <NUMBER_IMG>: Number of images used for calibration
o <CALI_DATA_FILE>: Output .npy file path

o <TRAIN_IMAGE_DIR>: Training image folder

(8) Convert ONNX to TFLite:

onnx2tf -i <ONNX_MODEL_PATH> -oiqt -qcind images
<CALI_DATA_NPY_FILE> "[[[[@,0,0]]111" "[[[[21,21,2]1]1]1"

Example:

onnx2tf -i YOLOX_ outputs/ONNX/yolox_nano_nu_helmet.onnx -
oiqt -qcind images

YOLOX_ outputs/yolox_nano_ti lite nu/calib_data_320x320 _n2
e0.npy "[[[[@,0,0]]]]" "[[[[1,1,1]]]]"

Flags Explanation:

o -oiqgt: Full-INT8 quantization
o -gcind images: Use image-based calibration data
o [[[[0,0,0111] and [[[[1,1,1]]]]: Min/max tensor values

7. Vela Compiler Workflow

Step 1: Edit variables.bat (in vela/ folder)

-81-



-

NN Don

131 &° Set MODEL_SRC_FILE and MODEL_OPTIMISE to your tflite filename

OCEL
t MOCEL

ne vela

———

Set VELA_ACCEL_CONFIG to ethos-u55-256

ciaccelerator confag. ethos-uS5-31, ethos-uds-64, ethos-uS5-128. ethos-us5-156. ethos-u65-256, ethos-wb3-512
set VELA ACCEL (ONFIG=ethos-ud5-136

Figure: Modify parameters in variables.bat file

Set MODEL_SRC_FILE=<your tflite modem>
Example:

set
MODEL_SRC_FILE=yolox_nano_nu_helmet_full integer_quant.tf
lite

Set MODEL_OPTIMISE_FILE=<output vela model>
Example:

set
MODEL_OPTIMISE_FILE=yolox_nano_nu_helmet_full integer_qua
nt_vela.tflite

Run itin Anaconda Terminal:

call variables.bat

Step 2: Run gen_model_cpp.bat to generate Vela-compiled .cc file:

Output: yolox_nano_nu_helmet_full_integer_quant_vela.tflite.cc
Path: vela/generated/
This .cc file includes pretrained model weights and should be placed in

Sample Code/Model directory.

-82 -



The weight .cc file will be flashed along with the firmware.

Device
GCC
IAR
EIL
Model

NEFLU

Pattern
ProfilerCounter

- | R | PSS

Figure: Location of Model Weights File

Figure: The content of Model Weights File

1.4 Inference Program System Flow on the Nuvoton
M55M1 Board

System Initialization

At system startup, hardware initialization is performed using the BoardInit()
function, which initializes components such as clock settings, UART,
HyperRAM, and optionally, the NPU.

Function Purpose

(1) BoardlInit()
a. Objective:

-83-



Performs hardware-related initialization to ensure that all modules
(clock, UART, memory, processing unit) are ready for subsequent
operations.

b. Function Details:

(a) SYS_Init(): Configures system clocks and parameters to maintain
timing consistency across modules.

(b) InitDebugUart(): Sets up UART (e.g., UART6) for debug output,
enabling printf for diagnostics.

(c) HyperRAM_Init(): Initializes HyperRAM and sets its operating mode
and interface.

(d) SPIM_HYPER_EnterDirectMapMode: Enters Direct Map mode for
more efficient HyperRAM access.

(e) ethosu_npu_init(): Initializes the Arm® Ethos™-U NPU if present.
Returns an error status if initialization fails.

(f) SYS_UnlockReg() / SYS_LockReg(): Unlocks and locks system
protection registers for critical configurations.

int BoardInit(void)

H
/* Unlock protected registers */
5YS UnlockReg() ;
S5YS Init():

| /* UART init - will enable wvalid use of printf (stds

* re-directed at this UARRT (URRTG) */

InitDebugUart () ;
5Y5 LockReg(): /* Unlock register
HyperRAM_Init(HYPERRAM_SPIM_PORT);
/* Enter direct-mapped mode to run new applications
SPIM HYPER EnterDirectMapMode (HYPERRAM SPIM PORT) ;
info("%s: complete\n",  FUNCTION );

l#if defined(ARM NPU)
int state;
/* If Arm Ethos-U NPU is to be used, we initialise :

if (0 != (state = arm ethosu npu init()))

I {

return state;

}

#endif /* ARM NPU */

Figure: BoardInit function

2. YOLO Initialization and Model Parameter Setup

-84 -



Function Purpose

(1) YoloXnanoNu::Init()
a. Objective:

Initializes the YOLO model using its TensorFlow Lite version via
YoloXnanoNu::Init() method.

b. Function Details:

Sets up the TensorFlow Lite runtime environment, including model
data and buffer configuration.

bool YoloXnanoNu::Init(uint8 t *tensordrena,
size t tensorArenaSize,
uint8 t *modelPointer,

size t modellen)

info("Initializing YOLO model...\n");

this->m_modelPointer = modelPointer;

this->m_modellen = modellen;

this-»m_interpreter = tflite::GetInterpreter(tensordrena, tensorfrenaSize, modelPoint
if (!this->m_interpreter)

{
printf_err("Failed to create TFLite interpreter.\n");

return false;

Figure: YoloXnanoNu::Init function

Capturing Image Input from Camera
Function Purpose

(1) get_empty_framebuf()
a. Objective:

Finds a buffer with status eFRAMEBUF_EMPTY to store a new image.

b. Function Details:

-85 -



Iterates through the buffer array to locate and return an empty frame
buffer, or NULL if none found.

//frame buffer managemnet function
static S FRAMEBUF *get empty framebuf ()

Hq
int i;
for (i = 0; 1 < NUM FRAMEBUF; i ++)
] {
if (s_asFramebuf[i].eState == eFRAMEBUF EMFPTY)
return &s asFramebuf[i];
}
return NULL;
'}

(Figure: get_empty_framebuf function)

(2) ImageSensor_Capture()
a. Objective:

Controls the image sensor to capture an image.

b. Function Details:
(a) CCAP_SetPacketBuf(): Sets the target buffer address.
(b) CCAP_Start(): Starts image capture.
(c) CCAP_Stop(TRUE): Stops capture and checks result.

int ImageSensor Capture(uint32 t u32FrameBufAddr)

I{
int 13ZRet = CCAP CK;
/* S5et System Memory Packet Base Address Register */
//printf ("sensor capture address %x \n", u32FrameBufAddr):
CCAP SetPacketBuf ((ulnt32Z t)u3ZFrameBufAddr) ;

/* 5S5tart image capture */
CCAP_Start():

/* Start image capture */
i32Ret = CCAP Stop(TRUE) ;

if (i3Z2Ret != CCAP OK)
return - ;

return 0;

Figure: ImageSensor_Capture function

- 86 -



4. Helmet Detection Model Inference Task Execution
Function Purpose

(1) get_full_framebuf()
a. Objective:
Finds a frame buffer marked eFRAMEBUF_FULL for use in inference.
b. Function Details:
Iterates the frame buffer array s_asFramebuf and returns the first valid
pointer or NULL.

static S _FRAMEBUF *get full framebuf ()

{
int i:
for (i = 0; i < NUM_FRAMEBUF; i ++)
{
if (3_asFramebuf[i].eState == eFRAMEBUF FULL)
return &s asFramebuf[i];
}
return NULL;
}

Figure: get_full_framebuf function

(2) inferencelob
a. Objective:
Constructs an inference task and enqueues it for processing.
b. Structure Details:
(a) responseQueue: Queue to receive inference responses.
(b) pPostProc: Callback for post-processing, e.g., filtering low-
confidence results or drawing bounding boxes.
(c) modelCols, modelRows: Input image dimensions.
(d) srclmgWidth, srcimgHeight: Source image size for coordinate
scaling.
(e) results: Output structure for inference results.

//trigger inference

inferenceJob->»responseQueue = inferenceResponseQueue;
inferenceJob->pPostProc = &postProcess;
inferenceJob->modelCols = inputImgCols;
inferenceJob->modelRows = inputImgRows;
inferenceJob->srcImgWidth = fullFramebuf->frameImage.w;
inferenceJob->srcImgHeight = fullFramebuf->frameImage.h;
inferenceJdob->results = &fullFramebuf->results;

XxQueueSend (inferenceProcessQueue, &inferenceJob, portMAX DELAY) ;
fullFramebuf->e5tate = eFRAMEBUF INF;

-87 -



Figure: inferencelob structure

(8) PresentinferenceResult()
a. Objective:

Displays inference results by annotating detected objects with class
labels and bounding boxes.

b. Function Details:
(a) results: A std::vector of DetectionResult, each with class index
(m_cls), confidence (m_normalisedVal), and bounding box (m_x0,
m_y0, m_w, m_h).
(b) labels: A std::vector<std::string> mapping class indices to human-
readable names.

|static bool PresentInferenceResult(const std::vector<arm::app::object detection::DetectionResult> &results,

i{

std::vector<std::string> &labels)

/* If profiling is enabled, and the time is wvalid. */
info("Final results:\n"):

for (uint3z_t i = 0; i < results.size(); ++i)

{
info("%" PRIuU32 ") %s(%f) —> %s {x=3%d,y=%d,w=%d,h=%d)}\n", i,

labels[results[i] .m._cls] .c_str (), .
results[i].m normalisedvVal, "Detection box:",
results[i].m x0, results[i]l.m y0, results[i].m w, results[i].m h);

}

return true;

Figure: PresentinferenceResult function
Post-Processing Module

Performs Non-Maximum Suppression (NMS) to improve detection accuracy
by removing redundant bounding boxes.

The purpose of NMS Purpose is to filter overlapping boxes to retain only the
most confident detections.

Function Purpose

(1) CalculateNMS() Parameters:
a. detections: Inference outputs including positions, confidence, and
class info.
b. net.numClasses: Total number of supported classes, NMS is applied
per class.
c. m_nms: loU threshold to determine box overlap—lLlower values apply
stricter suppression.

- 88 -



6. Displaying Results

Visualizes detection outcomes using DrawlmageDetectionBoxes() by
overlaying bounding boxes and labels on the image.

Function Purpose

(1) DrawlmageDetectionBoxes()
a. Objective:
Draws object detection results with bounding boxes and labels on the
image for user display.
b. Parameters:
(a) results: Vector of detection results.
(b) drawlmg: Target image for rendering.

(c) labels: Class label vector (e.g., "none", "warning", "helmet",
"person").

static void DrawImageDetectionBoxes (
const std::vector<arm::app::object detection::DetectionResult> &results,
image t *drawImg,
std::vector<std::string> &labels)

{

for (const auto &result : results)
{
imlib draw rectangle(drawImg, result.m x0, result.m y0, result.m w, result.m h, COLOR B5 MAX, 1, false);
imlib draw string(drawImg, result.m x0, result.m y0 - 16, labels[result.m cls].c str(), COLOR B5 MAX, 2, 0, 0, false,
false, false, false, [, false, false);

Figure: DrawlmageDetectionBoxes function

(2) Internal Operations
a. Drawingthe Rectangle:

The imlib_draw_rectangle function is used to draw a rectangle based
on the result’s m_x0, m_yO0 (top-left coordinates), m_w (width), and
m_h (height). The color and style of the rectangle can be customized.

b. Displaying the Label (String):

The imlib_draw_string function is used to display the label text
(provided by labels) above the rectangle. Font color, size, and style
can be configured.

-89 -



2 Smart Factory 2 - Fire Detection

2.1 Use Case Overview - Fire Detection

This project utilizes a dataset from the Roboflow open-source library and applies
machine learning techniques to train a model using YOLOX Nano. The trained
model is then converted to the TensorFlow Lite framework via ONNX, followed by
Full-INT8 quantization to meet the size constraints of the development board.
Subsequently, the modelis further optimized using the Vela compiler to ensure all
inference computations are executed on the Neural Processing Unit (NPU). Finally,
the optimized system is flashed to the Nuvoton M55M1 development board using
the Keil toolchain, successfully realizing a real-time, high-performance, and
energy-efficient fire detection system.

2.1.1 Introduction to Nuvoton Development Board and
Practical Applications

1. High-Efficiency Hardware Performance

Equipped with the Cortex®-M55 core and the Ethos™-U55 microNPU, the board
supports processing speeds of up to 220 MHz for neural network inference.
With support for Full-INT8 quantization, model computation becomes even
more efficient after quantization, significantly reducing memory and
computational resource usage—enabling highly efficient real-time inference.

2. Real-Time Performance with Low Latency

Thanks to the hardware acceleration capabilities of the Ethos™-U55 and the
high throughput of the Cortex®-M55, the system achieves a solid balance
between inference speed and detection accuracy in real-time applications.

3. Rich Expansion Interfaces

The M55M1 provides various interfaces, including a CMOS sensor interface
(CCAP) and a TFT-LCD display interface, allowing integration of a camera and
display for live image capture and on-device inference.

2.1.2 Practical Application in Fire Detection Systems

In factory environments where high temperatures prevail, fires are more likely to
occur and may start in areas that are not frequently monitored. When the fire

-90 -



detection system identifies the presence of flames, it triggers an alarm to alert

factory personnel to potential hidden dangers.

Based on the aforementioned advantages of the development board, the benefits
of using the M55M1 development board for fire detection include:

1.

Rapid Response: The flame detection capability can be integrated with
sensors (e.g., Arduino buzzers) to emit alerts at the scene of a fire, thereby
helping to mitigate casualties and property damage.

Efficient Deployment: With its low power consumption and rich peripheral
interfaces, the system can be deployed effectively in complex environments
such as factories and warehouses.

2.2 Dataset Collection

2.2.1 Dataset Introduction: Fire Detection Dataset (Roboflow)

Dataset Source

This dataset is sourced from the Fire Detection dataset on the Roboflow
platform. Itis specifically designed for fire detection tasks and contains a wide
variety of flame scene images. The dataset encompasses diverse
environments (e.g., indoor and outdoor, daytime and nighttime) to ensure
model adaptability and robustness across different scenarios.

Dataset Format

The dataset adopts the COCO JSON format, which includes the following
features:

(1) Standardized Annotations: Each image's flame location is annotated using
bounding boxes. Annotation data is stored in JSON format, making it easily
accessible for training frameworks.

(2) Extensibility: Supports multi-class annotations and descriptions of
complex scenes.

(8) Training Set: 1,210 images, used for primary model training, providing
sufficient samples for learning and fitting.

(4) Validation Set: 347 images, used during training to evaluate model
performance and prevent overfitting.

(5) Test Set: 164 images, used for final performance evaluation of the model.

-91-



3. Dataset Characteristics

(1) Diversity: Includes various scenes such as industrial zones, residential
environments, and outdoor settings, as well as different fire forms like
open flames and smoke, greatly enhancing the model’s generalization
capability.

(2) High-Quality Annotations: Each flame region in the images is precisely
annotated to ensure accurate bounding box localization.

(8) Openness: The dataset is publicly available via the Roboflow platform and
can be extended or augmented as needed.

4. Model Training Environment
To process this dataset, the project employs the following environment setup:

(1) Virtual Environment: Anaconda
(2) Training Framework: PyTorch
(3) Model: YOLOX-Nano

5. Dataset Application

The dataset is primarily used for fire detection tasks and is suitable for the
following application scenarios:

(1) Smart Security: Integrated into surveillance systems for real-time fire
detection and alert triggering.

(2) Industrial Safety: Deployed in factories or hazardous areas to enhance fire
emergency response capabilities.

Model and Dataset Download Link:
https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8

2.2.2 Dataset Preparation

This project uses the open-source fire detection dataset from Roboflow for
training. Given that YOLOX Nano is selected as the training model, the dataset is
formatted in the COCO standard.

2.2.3 Introduction to Roboflow

Roboflow is a platform dedicated to managing image datasets, aimed at helping
users efficiently handle image data throughout the lifecycle—from annotation to

-92 -


https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8

transformation and deployment. The platform offers numerous public datasets
contributed by users. Roboflow enables users to browse and utilize datasets that
match their project needs. Its core advantages include:

1. Multiple Format Support

Roboflow can convert datasets into various formats such as COCO, YOLO, and
Pascal VOC, making integration with different training frameworks seamless.

2. Data Augmentation

Offers a wide array of augmentation techniques including rotation, scaling,
flipping, and brightness adjustment, which improve model generalization.

3. Cloud-Based Management

Datasets are stored in the cloud, supporting team collaboration and version
control.

2.2.4 Dataset and Training Pipeline Design: From Collection to
Deployment

Steps to Acquire Dataset from Roboflow

Step 1: Visit the official Roboflow website

-93 -



&« (&} 25 roboflow.com w i

a

) 1. Click Product ) %
roboflow ’Products A | Solutions v  Resources ¥  Pricing Docs Blog Sign In ‘ Book a demo ’ Get Started '

PLATFORM
2. Click Universe

Eve [[ e ' d to build and deploy
on applications.

Annotate

l atasets, train models, and deploy to production.

i
. 2l Request a Demo

Workflows

Figure 68: https://roboflow.com

Step 2: Navigate to the Open Datasets section

a

roboflow Products v Solutions v Resources v Pricing Docs Blog Sign In Book a demo Get Started

ROB! SE

The Largest Resource of
Computer Vision
Datasets and Pre-Trained

Egg Detector Dataset

Models

Datasets Images Pre-trained Models

750k+ 575m+ 175k+

Circuit Board Dataset

Explore Universe

Figure 69: Accessing the Open-Source Datasets

Step 3: Search for a dataset using relevant keywords

-94 -



& Explore the Roboflow Universe

The world's largest collection of open source computer vision datasets and APIs.

@ 500 MILLION+ IMAGES 3 1,000,000+ DATASETS <3 250,000+ FINE-TUNED MODELS
Enter the text to search for the item you want

I nl

AllProjects  Object Detection  Classification  Instance Segmentation  Keypoint Detection ~ Semantic Segmentation  Multimodal

AllModels ~ RF-DETR  YOLOVI2  YOLOVIl  YOLOVIO  YOLOVS  YOLO-NAS  YOLOVEB  YOLOVS

Q Favorite Projects

Object Detection Model yolov8: yolov8 snap Object Detection Mode snap rfdetr rfdetr-base Object ction Modet P yolov1l yolovlin
rock-paper-scissors License Plate Recognition People Detection
by Roboflow by Roboflow Universe Projects by Leo Ueno

Figure 70: Search for “FIRE” dataset

Step 4: Select the desired dataset project

i N : Click Download Project

Dectect_fire Computer Vision Project [ & Owasssnt Pt |

Figure 71: Download option for selected dataset

Step 5: Choose the desired export format

2024-10-05 4:50pm

Select COCO JSON for Yolox nano

YoLOw1 FOLOhE oL Ol WOL O

Popiilsr Downlosd Formats

Pascsl VOO

YOLOsT COC0 JEON YOO Diaariorssd KWL

TF Recard Baleamms Copatolll JEOM e Fonraty

Figure 72: Select COCO format to download the dataset

-95-



U

2.3 Training the Fire Detection Model on PC Using

Anaconda Environment

2.3.1 Training Hardware and Configuration

Hardware: NVIDIA GeForce RTX 4060
CUDA Version: 11.8

PyTorch Version: 2.0.0

Training Dataset: 1,210 images

Training Parameters: Epochs =200, Batch size = 64

Training Duration: Approximately 1 hour

(1)

2.3.2 Complete Fire Detection Model Training Procedure

. Environment Setup Steps

Create Python Virtual Environment

Use the conda command to create a new Python virtual environment
named yolox_nu with Python version 3.10:

$ conda create --name yolox_nu python=3.10

Activate the newly created environment:

$ conda activate yolox_nu

Upgrade pip and setuptools to the latest versions:

$ python -m pip install --upgrade pip setuptools

Install CUDA, PyTorch, and Related Packages

Install deep learning packages optimized for CUDA 11.8 and PyTorch 2.0:

$ python -m pip install torch torchvision torchaudio --
index-url https://download.pytorch.org/whl/cull8

Install MMCV (Version 2.0.1)
Install MMCYV, an OpenMMLab utility library supporting model training:

$ python -m pip install mmcv==2.0.1 -f
https://download.openmmlab.com/mmcv/dist/cull8/torch2.0/i

ndex.html

-96 -


https://download.pytorch.org/whl/cu118
https://download.openmmlab.com/mmcv/dist/cu118/torch2.0/index.html
https://download.openmmlab.com/mmcv/dist/cu118/torch2.0/index.html

(4) Install Additional Dependencies

Change the working directory to the project root. Then install required
packages listed in requirements.txt:

$ python -m pip install --no-input -r requirements.txt
(5) Install YOLOX Package

Install the YOLOX model in development mode to allow real-time code
modifications without reinstallation:

$ python setup.py develop

After completing the above steps, the YOLOX Nano training environment is
fully prepared. You may then proceed to dataset configuration and begin
training the model.

2. Preparing for Custom Dataset Training
The following outlines the key steps required prior to model training;:
(1) Training with a Pretrained Model

Use the default configuration file located at
exps/default/yolox_nano_ti_lite nu.py. This file includes the
predefined YOLOX Nano model parameters. Ensure that it contains the
appropriate settings for your training scenario.

(2) Preparing the Dataset

The dataset must be organized according to the following directory
structure. In addition, modify the self.data_dir field in the YOLOX Python
configuration file to specify the actual dataset path.

-97 -



Datasets/<your_datasets_name>/
= annotatios/

= train2017/

\\\\\\\\\\\\\ P L L P ¥

= val2017/

\\\\\\\\\\\\\\\\\\\\\\\\\\\ v

Figure: Dataset directory architecture

self.data dir =

self.train ann =

self.val ann

Set path to your dataset

Figure: Set dataset path to code
Update this path accordingly in the training script.
(8) Adjusting Configuration File Parameters
Edit the parameters in yolox_nano_ti_lite_nu.py:
self.num_classes = 6

This line sets the number of object categories in the dataset. Change it to

match the actual number of classes in your dataset.

Set epoch to 200

Figure: Set epoch

-98 -



Set Classes
number based on
your dataset

Figure: Set num_classes

(4) About Epochs

An epoch refers to a single pass through the entire training dataset by the
neural network.

a. Effect of Epoch Count:
= Too few: The model may underfit due to insufficient learning.
= Too many: The model may overfit and waste training time.

Use validation accuracy/loss to determine an optimal value and
consider implementing Early Stopping to automatically halt training
once performance saturates.

b. How to Choose a Proper Epoch Value:
Consider:

= Dataset size: Smaller datasets may require more epochs.

= Model complexity: More complex models may benefit from
more training iterations.

=  Monitoring: Track loss/accuracy on the validation set to choose
the most efficient stopping point.

c. Interaction with Other Parameters:

Batch Size: Smaller batches may require more epochs; larger batches
provide stable gradients but may reduce generalization.

Learning Rate: A high learning rate may cause instability, requiring more
epochs for correction; a low learning rate may need many epochs to
converge.

3. StartTraining
Execute the following command in the terminal to begin model training:

python tools/train.py -f <MODEL_CONFIG_FILE> -d 1 -b
<BATCH_SIZE> --fpl6 -0 -c <PRETRAIN_MODEL_PATH>

-99 -



Parameter Explanation:

-f <MODEL_CONFIG_FILE>: Path to the configuration file
(yolox_nano_ti_lite_nu.py)

-d 1: Number of devices (e.g., 1 GPU)

-b <BATCH_SIZE>: Batch size (e.g., 64)

--fpl6: Enable mixed precision training for speedup
-0: Enable automatic mixed precision optimization

-c <PRETRAIN_MODEL_PATH>: Path to the pretrained weights file

This completes the preparation process for training a custom fire detection
model using YOLOX Nano.

2.3.3 Detailed Explanation of Machine Learning Model
Framework Conversion and Quantization

1. Machine Learning Model Framework Conversion

PyTorch is a powerful deep learning framework; however, it may require
conversion to a more universal format for deployment on embedded devices
or cross-platform environments. ONNX (Open Neural Network Exchange)
provides a standardized model format that facilitates interoperability across
different frameworks.

Execute the following command to convert the PyTorch model into the ONNX
format. This step generates an ONNX model to enable subsequent
optimization or deployment:

python tools/export_onnx.py -f <MODEL_CONFIG_FILE> -c
<TRAINED_ PYTORCH_MODEL> --output-name <ONNX_MODEL_PATH>

Parameter Explanation:

<MODEL_CONFIG_FILE>:The configuration file defining the model structure
and parameters.

<TRAINED_PYTORCH_MODEL>: The trained PyTorch model weights file.

<ONNX_MODEL_PATH>: The output path for the converted ONNX model.

-100 -



2. Model Quantization

Model quantization is a technique that improves execution efficiency by
reducing model parameter precision (e.g., from floating point to integer
format). This is particularly important for resource-constrained systems such
as embedded platforms. This project applies Full Integer 8-bit Quantization
(Full-INT8), where calibration data is used during quantization to fine-tune
parameters and maintain model accuracy.

(1) Create Calibration Data
Execute the following command to generate calibration data:

python demo/TFLite/generate_calib_data.py --img-size
<IMG_SIZE> --n-img <NUMBER_IMG_FOR_CALI> -o
<CALI_DATA_NPY FILE> --img-dir <PATH_OF_TRAIN_IMAGE_DIR>

Parameter Explanation:

<IMG_SIZE>: Inputimage dimensions, e.g., 320x320.

<NUMBER_IMG_FOR_CALI>: Number of images used for calibration.

<CALI_DATA_NPY_FILE>: Output path of the calibration data .npy file.

<PATH_OF_TRAIN_IMAGE_DIR>: Path to the training image directory.
(2) Convert ONNX to TFLite (Quantized Format)

This step compresses the ONNX model into a TensorFlow Lite format
suitable for embedded systems. Use the following command to perform
the conversion with quantization:

onnx2tf -i <ONNX_MODEL_PATH> -oiqt -qcind images
<CALI DATA_NPY_FILE> "[[[[®,0,0]1111" "[[[[1,2,2111]"

Parameter Explanation:

<ONNX_MODEL_PATH>: Path to the input ONNX model.
<TFLITE_MODEL_PATH>: Path to the output quantized TFLite model.
-oiqt: Enables Full Integer 8-bit Quantization.

-gcindimages: Specifies the calibration input data type as images.

<CALI DATA NPY_FILE>: Calibration data file used for parameter
adjustment.

-101 -



"T[[[9,9,0]1111" / "[[[[1,1,1]]]]": Defines the normalization
range of the input tensor.

2.3.4 Introduction and Workflow of the Vela Compiler

1. Overview of the Vela Compiler

Vela is a compiler designed specifically for Arm® microNPU (Neural Processing
Unit). Its primary purpose is to optimize TensorFlow Lite (TFLite) models and
generate high-efficiency inference formats compatible with Arm’s microNPU
architecture.

(1) Core Features
a. Model Optimization: Converts TFLite models into optimized formats for
acceleration on NPU.
b. Computation Allocation: Offloads suitable operations to the NPU,
reducing CPU workload and improving inference speed.
c. Memory Access Optimization: Enhances memory access patterns and
instruction flows to boost inference efficiency.

(2) Weight Compression

Supports lossless compression of weight files, reducing SRAM and Flash
memory usage without sacrificing accuracy.

2. Vela Compilation Workflow

Step 1: Modify the variables.bat configuration file to set paths and parameters.

Set VELA_ACCEL_CONFIG to ethos-u55-256

siaccelerator comfig. ethos-udd-31, ethos-udd-64. ethos-udd-128. ethos-udi-156. ethos-ub3-136. ethos-ubd-312
set VELA AQCEL CONFIG=ethos-u35-136

-102 -



Figure: Modify the variables.bat file

Step 2: Run the gen_model _cpp.bat batch file. Upon execution, this
generates a Vela-compiled and optimized TFLite model suitable for direct
inference using a microNPU.

‘E gen_model_cpp 2024/9/9 EF 11113 Windows #L30REE 1KB

Figure: Run the gen_model_cpp.bat

The resulting TFLite model can be visualized using Netron, an open-source
model visualization tool that supports various neural network formats (e.g.,
CNN, RNN, etc.).

Structural Comparison Before and After Vela Compilation:

Before Compilation: Some operations on the CPU require additional memory I/0O,
which slows down inference.

After Compilation: All computations are offloaded to the Ethos™-U NPU,
eliminating the need for concatenation operations and reducing data transfer
overhead—thus enhancing inference performance.

After Vela Compilation

Before Vela Compilation

[ serving_default_images:0 ]

1=320=320=3

1=2100=11

[_F"artitiunedl:.all:ﬂ_]

Figure: Structure comparison before/after Vela compilation

-103 -



2.4 Inference Program System Flow on the Development
Board

' N
1 System
’ Initialization
L >
|
‘4 N
5 Capture "
' Images
A S
i
s h'
3. Inference
\ J
!
' N
Post
4, .
Processing
. S
|
(~ R
5. | Display Result
. J
No

Figure: System Flowchart

2.4.1 System Initialization

System Initialization aims to establish a stable operational foundation to prevent
unexpected issues during execution. This stage includes initializing hardware
resources to ensure devices (such as sensors and processors) function properly
and meet the system's runtime requirements. It also involves configuring the
software environment—loading models and setting parameters—to enable
optimalinference performance.

-104 -



In embedded system development, initializing the hardware and system clocks is
a critical step for stable operation. Below is a detailed breakdown of two code
segments: system clock initialization and hardware initialization.

4. System Clock Initialization (SYS_Init function)
(1) Enable Internal RC 12MHz Clock (HIRC):
a. Call CLK_EnableXtalRC(CLK_SRCCTL_HIRCEN_Msk) to enable the
internal oscillator.
b. Use CLK_WaitClockReady(CLK_STATUS_HIRCSTB_Msk) to ensure
clock stability.
(2) Enable External High-Frequency Clock (HXT):
a. Enable via CLK_EnableXtalRC(CLK_SRCCTL_HXTEN_Msk)
b. Confirm stability with
CLK_WaitClockReady(CLK_STATUS_HXTSTB_Msk)
(3) Set System Clock Source:
a. Switch to APLLO and configure to 180MHz using CLK_SetBusClock.
b. Call SystemCoreClockUpdate() to update the core clock value.
(4) Enable Module Clocks:
a. Enable clocks for GPIO, NPU, FMCO, and CCAPO.
b. Set UART6 clock source to HIRC using SetDebugUartCLK().
(5) Configure Multi-Function Pins:
a. Set UART RXD and TXD pins for serial communication.
b. CallHyperRAM_PinConfig to configure SPI pins for HyperRAM.

-105 -



SYS Init(

CLK_EnablextalRC(CLK_SRCCTL_HIRCEN Msk);
CLK WaitClockReady(CLK STATUS HIRCSTB Msk);
CLK_EnableXtalRC(CLK_SRCCTL_HXTEN_Msk);

CLK WaitclockReady(CLK STATUS HXTSTB Msk);
CLK_SetBusClock(CLK_SCLKSEL_SCLKSEL_APLLO, CLK_APLLCTL_APLLSRC_HIRC, FREQ 186MHZ);

SystemCoreClockUpdate();
CLK_EnableModuleClock(GPIOA MODULE)
CLK_EnableModuleCloc
CLK_EnableModuleCloc
CLK_EnableModuleCloc
CLK_EnableModuleCloc
CLK_EnableModuleCloc
CLK_EnableModuleCloc
CLK_EnableModuleCloc
CLK_EnableModuleCloc |
CLK_EnableModuleCloc 10J_MODULE)
CLK_EnableModuleCloc MCO MODULE)
CLK_EnableModuleClock(NPU® MODULE);
CLK_EnableModuleClock(CCAP@ MODULE)
SetDebugUartcLK();

SetDebuglartMFP();
HyperRAM_PinConfig(HYPERRAM_SPIM_PORT);

Figure: System Clock Initialization (SYS_Init function)

5. Hardware Initialization (BoardInit function)
This function invokes SYS_Init() and performs additional hardware setups:
(1) Unlock Protected Registers:

Unlock system registers using SYS_UnlockReg() for clock and module
configuration.

(2) Invoke SYS_Init():
Complete system and module clock setup.
(3) Initialize UART:
Call InitDebugUart() to set up UART6 for printf output.
(4) Lock Registers:
Use SYS_LockReg() to prevent unintended future changes.

(5) Initialize HyperRAM:

-106 -



Call HyperRAM_Init() and enter Direct Map Mode using
SPIM_HYPER_EnterDirectMapMode().

(6) Initialize NPU (Optional):
If ARM® NPU is used, initialize Ethos™-U with ethosu_npu_init().
(7) Output System Design Name:

Use info("Target system: %s\n", DESIGN_NAME) to display the design
identifier.

BoardInit( )

SYS_UnlockReg();

SYS Init();

InitDebugUar

SYS_LockReg(

HyperRAM Init(HYPERRAM SPIM PORT);

SPIM HYPER EnterDirectMapMode(HYPERRAM SPIM PORT);
i \n",  FUNCTION );

state = arm_ethosu npu_init()))

return state;

#endif

info("Target system: %s\n", DESIGN NAME);
return @;

Figure: Hardware Initialization (Boardlnit function)

2.4.2 Capture Image

The purpose of image capture is to obtain real-time input images for inference. It
ensures rapid response and accurate analysis. Input accuracy and timeliness are
critical for detection quality, especially in dynamic environments where real-time
updates are necessary (e.g., moving objects). In main.cpp, image capture is
handled via the Camera Capture (CCAP) functionality within the main_task()
function.

-107 -



1. Camera Initialization
(1) CalllmageSensor_Init to set up hardware.
(2) CalllmageSensor_Config to configure image format as
eIMAGE_FMT_RGB565 and resolution using frameBufferw and
frameBuffer.h.

ImageSensor Init();

ImageSensor_Config(eIMAGE_FMT_RGB565, frameBuffer.w, frameBuffer.h);
#endif

Figure: Code for Camera Initialization

2. Image Capture Logic

Check for an available buffer using get_empty_framebuf(). If available,
proceed to capture.

S FRAMEBUF *get empty framebuf()

1 = 0; 1 < NUM FRAMEBUF; 1 ++)

s_asFramebuf[i].eState == eFRAMEBUF_EMPTY
return &s asFramebuf[1i];

return

Figure: Check the Availability of Empty Image Buffers
3. Capture Execution

Use ImageSensor_Capture to store the image in emptyFramebuf-
>framelmage.data.

ImageSensor Capture(( ) (emptyFramebuf->frameImage.data));

Figure: Execute Capture Operation

4. Update Buffer State

-108 -



Mark buffer status as eFRAMEBUF_FULL to indicate availability of a complete
image.

emptyFramebuf->results.clear();

emptyFramebuf->eState = eFRAMEBUF_FULL;

Figure: Update Image Buffer State
5. Image Format Processing (Static Source Mode)

In non-CCAP mode, static images are copied from pu8lmgSrc to the buffer.
Image scaling and format conversion are performed by imlib_nvt_scale.

6. Frame Buffer Management (S_FRAMEBUF)
(1) get_empty_framebuf: Obtain a free buffer for new capture.
(2) get_full_framebuf: Identify filled frames pending processing.
(3) get_inf_framebuf: Retrieve inference-ready frames for display.

7. Output and Preprocessing

Captured images are resized and quantized, then passed to the inference
module for object detection.

2.4.3 Inference

The inference stage uses a pre-trained model to analyze captured images and
detect or classify objects. The system extracts features and generates inference
results in real-time, leveraging on-board hardware such as the NPU for
acceleration. Efficient and accurate inference is a key performance metric.

Steps:

arm: :app: :YoloXnanoNu model;

Figure: STEP 1: Create model instance.

-109 -



(!model.Init(arm::app::tensorArena,
(arm: :app: :tensorArena),
oloxnanonu: :GetModelPointer(),
arm: :app: :yoloxnanonu: :GetModelLen()))

printf err("Failed to initialise model\n");
vTaskDelete H
return;

Figure: STEP 2: Initialize the model.

TfLiteIntArray *inputShape = model.GetInputShape(6);

inputImgCols = inputShape->data[arm::app::YoloXnanohu::ms inputColsIdx];
inputImgRows = inputShape->data[arm::app::YoloXnanohu: :ms_inputRowsIdx];

Figure: STEP 3: Configure model input dimensions.

Capture image to S_FRAMEBUF *fullFramebuf. Use imlib_nvt_scale to resize the
image and define ROI. Load processed image into the input tensor via TfLiteTensor
*inputTensor = model.GetlnputTensor(0). Call m_model->Runinference() to

execute analysis.

S_FRAMEBUF *fullFramebuf;

imlib nvt scale(&fullFramebuf->frameImage, &resizelmg, &roi);

TfLiteTensor *inputTensor = model.GetInputTensor(e);
runInf = m_model->RunInference();

Figure: STEP 4: Preprocessing Image

2.4.4 Post-Processing & Draw Results

Post-processing refines the model output by filtering low-confidence detections
and visualizing results on the image with bounding boxes and labels.

Steps:

1. Scale Bounding Boxes

-110 -



Map model output (x, y, w, h) to the original image scale and clip to valid
bounds.

&it : detections)

it.bbox.x it.bbox.x * originalImageWidth) / net.inputWidth;
it.bbox.y it.bbox.y * originalImageHeight) / net.inputHeight;
it.bbox.w it.bbox.w * originalImageWidth) / net.inputWidth;
it.bbox.h it.bbox.h * originalImageHeight) / net.inputHeight;

Figure: Scale Bounding Box

2. Extract and Store Results

For each class, if confidence > 0, save the class, score, and bounding box.

j = ©8; j < net.numClasses;

if (it.prob[j] > @)

{
DetectionResult tmpResult
tmpResult.m normalisedval = it.prob[j];
tmpResult.m x@ = (int)boxX;
tmpResult. ( Jboxy;
tmpResult.m | (int)boxwWidth;
tmpResult.m | (int)boxHeight;
tmpResult.m_

resultsout.push back(tmpResult);

Figure: Extract Result
3. Apply Non-Maximum Suppression (NMS)

Remove overlapping boxes using threshold m_nms.

CalculatenMS(detections, net.numClasses, m nms);

Figure: Execute NMS
4. Store Final Results

Results are saved in resultsOut for later display or analysis.

111 -



resultsOut.push back(tmpResult);

Figure: Store Final Results

2.4.5 Display Results

Final results are displayed visually to users, enabling real-time monitoring and
informed decisions (e.g., triggering alarms).

In main.cpp, the DrawlmageDetectionBoxes function visualizes the detection:

1. Iterate over all detections in results.

2. Draw bounding rectangles via imlib_draw_rectangle().

3. Render class labels above boxes using
imlib_draw_string(labels[result.m_cls]).

tection: :Detecti ult> &results,
ng> &labels)

&result : results

imlib draw_rectangle(drawImg, result.m x@, result.m_y8, result.m w, result.m_h, COLOR_BS MAX, 1,
imlib draw_string(drawImg, result.m x8, result.m_y® - 16, labels[result.m_cls].c_str(), COLOR B5 MAX, 2, @, @,
i) L] .‘E!.‘ 3 H

Figure: DrawlmageDetectionBoxes Function

2.4.6 Flash to Development Board and Test

-112-



Image 2: Example testimage

2.5 Conclusion and Future Development

In this fire detection system project, we successfully implemented a high-
performance, real-time, and energy-efficient fire detection solution on the
Nuvoton M55M1 development board by integrating the Roboflow dataset with the
YOLOX-Nano model. Through Full-INT8 quantization and optimization using the
Vela compiler, we significantly enhanced both inference speed and accuracy,
achieving up to 98% detection accuracy in testing. The system accomplished the

following goals:

1. Rapid Response Capability

-113-



Real-time image capture and fire region annotation provide effective early
warning for factories and other high-risk environments.

High Performance with Low Power Consumption

By leveraging NPU hardware acceleration, the system delivers high-
performance computation within an embedded environment while reducing
power consumption.

Scalability

The development board’s rich interface support makes it suitable for various
scenarios, including industrial zones, home safety, and public facility fire
prevention.

Multimodal Sensor Integration

Integrating other sensing technologies (such as temperature sensors or smoke
detectors) enhances detection accuracy and versatility.

Improved Model Generalization

Expanding the dataset with diverse fire scenarios and environments
strengthens the model’s adaptability across varied real-world conditions.

Edge Computing Optimization

Further research into advanced model compression and optimization
techniques forembedded systems can help minimize computational resource
requirements.

Remote Monitoring and Connectivity

By incorporating loT technologies, the system enables real-time cloud data
upload and remote monitoring, thereby enhancing overall usability and system
performance.

These future development directions will further improve the functionality and

applicability of the fire detection system, contributing to broader deployment in

smart factories, smart homes, and public safety domains—ultimately reducing

the risk of fire-related loss of life and property.

References:

English

Roboflow. In this blog, you will learn about | by Muhammad Faizan | Red
Buffer | Medium

-114 -


https://medium.com/red-buffer/roboflow-d4e8c4b52515
https://medium.com/red-buffer/roboflow-d4e8c4b52515

e https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8?tab=readme-ov-file

Traditional Chinese

e https://hackmd.io/@hohoho/rkdZNWaZh

e https://medium.com/@andy6804tw/%E5%BF%AB%E9%80%9F%E4%B8%8
A%E6%89%8Byolo-%E5%88%A9%E7%94%A8-roboflow-%E5%92%8C-
ultralytics-hub-
%ES5%AE%8C%E6%88%90%E6%A8%A1%ES5%IE%8B%E8%A8%93%E7%B7

%BA4%E8%88%87 %E7%AE%A1%E7%90%86-%E4%B8%8A-37acd110a8a0
e https://hackmd.io/@nB1rzit6Toq8WdkZosRK_Q/r16-c7Ynj
e https://ithelp.ithome.com.tw/articles/10305905

-115-


https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8?tab=readme-ov-file
https://hackmd.io/@hohoho/rkdZNWaZh
https://medium.com/@andy6804tw/%E5%BF%AB%E9%80%9F%E4%B8%8A%E6%89%8Byolo-%E5%88%A9%E7%94%A8-roboflow-%E5%92%8C-ultralytics-hub-%E5%AE%8C%E6%88%90%E6%A8%A1%E5%9E%8B%E8%A8%93%E7%B7%B4%E8%88%87%E7%AE%A1%E7%90%86-%E4%B8%8A-37acd110a8a0
https://medium.com/@andy6804tw/%E5%BF%AB%E9%80%9F%E4%B8%8A%E6%89%8Byolo-%E5%88%A9%E7%94%A8-roboflow-%E5%92%8C-ultralytics-hub-%E5%AE%8C%E6%88%90%E6%A8%A1%E5%9E%8B%E8%A8%93%E7%B7%B4%E8%88%87%E7%AE%A1%E7%90%86-%E4%B8%8A-37acd110a8a0
https://medium.com/@andy6804tw/%E5%BF%AB%E9%80%9F%E4%B8%8A%E6%89%8Byolo-%E5%88%A9%E7%94%A8-roboflow-%E5%92%8C-ultralytics-hub-%E5%AE%8C%E6%88%90%E6%A8%A1%E5%9E%8B%E8%A8%93%E7%B7%B4%E8%88%87%E7%AE%A1%E7%90%86-%E4%B8%8A-37acd110a8a0
https://medium.com/@andy6804tw/%E5%BF%AB%E9%80%9F%E4%B8%8A%E6%89%8Byolo-%E5%88%A9%E7%94%A8-roboflow-%E5%92%8C-ultralytics-hub-%E5%AE%8C%E6%88%90%E6%A8%A1%E5%9E%8B%E8%A8%93%E7%B7%B4%E8%88%87%E7%AE%A1%E7%90%86-%E4%B8%8A-37acd110a8a0
https://medium.com/@andy6804tw/%E5%BF%AB%E9%80%9F%E4%B8%8A%E6%89%8Byolo-%E5%88%A9%E7%94%A8-roboflow-%E5%92%8C-ultralytics-hub-%E5%AE%8C%E6%88%90%E6%A8%A1%E5%9E%8B%E8%A8%93%E7%B7%B4%E8%88%87%E7%AE%A1%E7%90%86-%E4%B8%8A-37acd110a8a0
https://hackmd.io/@nB1rzit6Toq8WdkZosRK_Q/r16-c7Ynj
https://ithelp.ithome.com.tw/articles/10305905

3 Smart Factory 3 — Noise Reduction and Keyword
Detection

3.1 Case Overview — Noise Reduction and Keyword
Detection

3.1.1 Project Background

In the rapidly evolving era of digitalization and intelligent technologies, audio
processing has become a critical technology in lol, smart factories, and
embedded application scenarios. With the widespread adoption of smart devices,
user demand for voice interaction continues to grow. However, in industrial
environments or household settings, background noise often interferes with
accurate voice signal recognition. This raises the bar for the user experience of
smart devices.

How to effectively suppress noise while accurately recognizing voice commands
is a significant research challenge in current speech processing technology. This
project focuses on an embedded voice processing solution based on the Nuvoton
M55M1 development board. It integrates spectral subtraction noise reduction
technology with a keyword spotting (KWS) model. The goal is to address the
accuracy of voice commands under noisy conditions while enhancing the
system's real-time performance.

The specific objectives of this project include:
1. Development of a Noise Reduction Module:

Utilizing spectral subtraction techniques to significantly reduce background
noise, improve the clarity of speech signals, and provide high-quality data for
subsequent voice processing.

2. Integration of Keyword Spotting Module:

By incorporating keyword recognition technology, the system can quickly
identify voice commands for use in voice-controlled scenarios.

3. Performance Optimization:

Leveraging ARM® Helium technology to enhance computational efficiency and
ensure the system meets low-power and real-time processing requirementsin
embedded environments.

-116 -



Figure: Projected Implementation Flow

3.1.2 Expected Goals

This project builds on the keyword recognition module provided by Nuvoton,
which is capable of recognizing ten common keywords:

yes , noll, Ilupll’ Ildownll’ “left“’ “right“, “On", "Off", Ilstopll’ Ilgoll‘

Based on this foundation, a spectral subtraction-based noise reduction function
will be added and accelerated using ARM® Helium technology to further improve
system performance. At the same time, the terminal’s interactive functionality will
be enhanced, offering more operation options for user control and adjustment.

In testing under noisy environments, the original keyword recognition module
achieved an accuracy rate of 69% (69/100). After incorporating the spectral
subtraction-based noise reduction feature, the recognition accuracy significantly
improved to 85% (85/100). This demonstrates that such noise reduction
technology can indeed enhance the stability and accuracy of voice recognition.

e e LaEl: Up, score: 0.992188; threshold: 0.600000

Figure: Recognition result for voice input "up" displayed on the terminal

-117 -



3.1.3 Introduction to the Nuvoton M55M1 Development Board

The Nuvoton M55M1 development board is a high-performance hardware
platform designed for embedded application scenarios. Its core is based on the
ARMP® Cortex®-M55 processor architecture, combined with multiple technological
advantages, making it particularly well-suited for voice processing applications.

Key Features of the Nuvoton M55M1:

1. High-Performance Computing:

(1) Supports Helium technology (M-Profile Vector Extension), significantly
enhancing computation speed for Digital Signal Processing (DSP) and
Machine Learning (ML) tasks.

(2) Capable of efficiently executing compute-intensive operations such as
Fast Fourier Transform (FFT) and matrix computation.

2. Diverse I/0O Interfaces:

(1) Supports digital microphones (DMIC) and Micro-Electro-Mechanical
Systems (MEMS MIC), providing hardware support for high-precision voice
data acquisition.

(2) Richly equipped with GPIO, UART, and I2S interfaces to meet various
application needs.

3. Ease of Development:
(1) Provides a complete Software Development Kit (SDK) and development
tools, supporting rapid deployment and testing.
(2) Compatible with Keil, ARM CMSIS-DSP, and other toolchains, enabling
developers to get started quickly.

Application Value:

In voice signal processing, the Nuvoton M55M1 development board supports
multiple operations, including signal preprocessing, feature extraction, and
model inference. Its outstanding performance makes it the core hardware
platform of this project, providing a solid foundation for implementing noise
reduction and keyword recognition functions.

-118 -



1.

3.1.4 Overview of Spectral Subtraction and Keyword
Recognition Technologies

Spectral Subtraction

Spectral subtraction is a classical noise reduction technique in audio signal
processing. Its core idea is to estimate the spectrum of background noise and
subtract it from the noisy speech spectrum to achieve noise suppression.

The specific implementation involves the following steps:

(1) Background Noise Modeling: Use the spectral characteristics of
environmental background noise as a reference to generate a noise
template.

(2) Spectral Subtraction: Subtract the estimated noise spectrum from the
speech spectrum to eliminate noise components.

(8) Signal Reconstruction: Use Inverse Fast Fourier Transform (IFFT) to
reconstruct a clean time-domain signal.

Keyword Recognition

Keyword recognition is a crucial application in speech processing, aiming to
detect specific speech commands (e.g., “turn on the light”) from continuous
audio streams.

The implementation process includes:

(1) Voice Feature Extraction: Extract features such as Mel-Frequency Cepstral
Coefficients (MFCC) from the speech signal.

(2) Model Inference: Feed the extracted features into a pre-trained neural
network model for recognition.

(3) Application Trigger: Trigger the corresponding command or operation
based on the recognition result.

Advantages of Technology Integration

The integration of spectral subtraction and keyword recognition effectively
eliminates noise interference in industrial or home environments, enhances
the accuracy of voice command recognition, and reduces the system's false
activation rate.

-119 -



3.1.5 Features and Advantages of ARM® Helium Technology

ARM® Helium is a vector extension technology (M-Profile Vector Extension, MVE)
specifically designed for the Cortex®-M processor series. It aims to significantly
enhance computational performance in embedded devices, particularly in the
areas of digital signal processing (DSP) and machine learning (ML).

Key Features of Helium Technology

1. High-Efficiency Computation
(1) Supports vectorized operations, enabling simultaneous processing of
multiple data elements, significantly accelerating DSP tasks such as FFT
and filtering.
(2) Provides substantial optimization for matrix operations used in noise
reduction algorithms such as spectral subtraction.
2. Low Power Design
(1) Tailored for embedded devices, it improves computational performance
while maintaining low power consumption.
(2) Suitable forlong-running smart devices, such asvoice-controlled systems.
3. Wide Application Range
(1) Supports various application domains including audio processing,
machine learning inference, and image processing.
(2) Meets the needs of multiple sectors, including smart homes, industrial
automation, and medical devices.

Application in This Project

In this project, Helium technology is utilized to optimize the computational
efficiency of spectral subtraction and MFCC feature extraction. It significantly
reduces processing latency while ensuring real-time system performance. This
enables the M55M1 development board to execute voice processing tasks
efficiently, making it an ideal platform for embedded voice applications.

Summary

Chapter One provides a comprehensive framework—from project background
and foundational technologies to the hardware platform—establishing clear
objectives and references for subsequent development processes and technical
implementations.

3.2 Development Process Overview

-120 -



This project centers on achieving effective noise reduction and accurate keyword
recognition. Through a well-defined hardware architecture and software workflow,
it ensures tight coordination among functional modules and stable system
operation.

3.2.1 System Architecture Design

The system architecture is divided into two main sections: hardware architecture
and software workflow. Each component handles voice signal acquisition,
processing, and output, forming a complete pipeline from data collection to
command triggering.

Hardware Architecture Design

1. Microphone Input Module
(1) Function: Uses a Digital Microphone (DMIC) to capture speech signals,
ensuring high-quality and stable input data.
(2) Value: DMIC effectively reduces noise issues common in analog
microphones, improving signal clarity and fidelity.
2. Core Processing Module
(1) Function: Uses the Nuvoton M55M1 development board as the main
controller to execute voice data collection, noise reduction, and keyword
recognition.
(2) Feature: The M55M1 supports ARM® Helium technology for efficient
computation and fast execution of complex algorithms.
3. Output Module
(1) Function: Outputs recognition results via terminal; users can use these
results to drive external devices.
(2) Application Scenarios: Includes smart home command triggers, industrial
device control, etc.

Software Workflow Design

The software workflow is composed of three primary stages to ensure voice data
is processed from raw input to command execution:

1. Audio Preprocessing

121 -



The captured speech signal is segmented and converted into the frequency
domain using Short-Time Fourier Transform (STFT), laying the foundation for
noise reduction and feature extraction.

Noise Reduction

Spectral subtraction is applied to eliminate background noise, retaining
effective frequency components in the voice signal and producing a clean
audio stream.

Keyword Recognition

The noise-reduced signal is used to extract speech features (e.g., MFCC) and
fed into a pre-trained deep learning model for classification and accurate voice
command recognition.

3.2.2 Hardware and Software Requirements List

To ensure smooth project execution, the following resources are required:

Hardware Requirements

1.

3.

Nuvoton M55M1 Development Board

Serves as the main control unit with stable processing performance and rich
I/0 support. Itis the core hardware platform of this project.

Digital Microphone (DMIC)

Responsible for capturing high-quality speech signals and providing
consistentinput.

Terminal or Display Device

Displays the results of noise reduction and recognition, allowing users to verify
system performance.

Power Supply Module

Provides stable power to the hardware system to ensure reliable long-term
operation. Includes UART interface for communication with PC terminals.

-122 -



a*u\a--n\o n""‘@

nnnﬂm

Power and UART

nuvoTon

NuMaker-M55M1 V1.0

Analog Microphone

EMS Mlcrophone (Digital Microphone) (Used in this project)

Figure: Related I/0 Modules in the Project

Software Requirements

1.

Keil MDK

The primary C development environment, suitable for programming and
compiling code for the M55M1 development board.

Python Environment

Used to simulate spectral subtraction for validating algorithm feasibility and
parameter tuning.

ARM® DSP Library

Provides efficient digital signal processing tools to accelerate calculations for
STFT, spectral subtraction, and feature extraction.

Terminal Tools

e.g., PUTTY or Tera Term, used for system interaction, debugging, and data
monitoring.

Development Procedure

To systematically complete the project, the development steps are structured as

follows:

-123 -



DSP Noise Reduction Design

DSP NR integrate into Nuvoton KWS Module

Terminal Page Design

Figure: System Development Flow

Summary

Chapter 2 provides a detailed explanation of the system design and development
process. Both hardware and software aspects are meticulously planned. The
modular design and clearly defined steps offer an efficient development path,
laying a solid foundation for the practicalimplementation in subsequent chapters.

3.3 Theoretical Foundation of Spectral Subtraction

Spectral subtraction is a classical speech denoising technique widely used in
speech signal processing under noisy environments. This chapter provides a
detailed explanation of the signal model, core algorithm principles, and the
challenges and solutions encountered during its application.

3.3.1 Signal Model of Spectral Subtraction

The fundamental concept of spectral subtraction is to model the spectral
characteristics of background noise and subtract them from the noisy speech
spectrum to restore a clean speech signal.

124 -



-

Sound Spectrum Moise Spectrum Clean Vocal Spectrum

Figure: Conceptual Diagram of Spectral Subtraction

Mathematical Representation of the Signal Model

In the time domain, a noisy speech signal, y(t) can be represented as:

y(t)=s(t)+n(t)
Where:

e y(t): Noisy speech signal
e s(t): Clean speech signal
e n(t): Background noise signal

Signal Model: y(t) = s(t) + n(t) (Simplified)

1.0
0.5

0.0

Amplitude

~1.0

0.0 0.2 04 0.6 08

1.0
Time {seconds)

Figure: lllustration of y(t)=s(t)+n(t)

By applying Fourier Transform to convert the signalinto the frequency domain, the
model becomes:

Where:

e Y(f): Spectrum of the noisy speech
e S(f): Spectrum of the clean speech
e N(f): Spectrum of the background noise

~ ~

- 125 -



Application Value

The core advantage of this denoising algorithm lies in its simplicity and efficiency,

making it particularly suitable for speech denoising in embedded systems.

1.

3.3.2 Introduction to STFT (Short-Time Fourier Transform)

Characteristics of Speech Signals
Speech signals are time-varying signals whose frequency components change
over time. Performing a Fourier Transform on the entire speech segment only
provides spectral information over the entire duration and fails to capture
frequency changes over time.
Principles and Advantages of STFT
Short-Time Fourier Transform (STFT) performs Fourier Transforms on
segmented and windowed portions of the signal, enabling observation of
frequency changes over time.
Mathematical Expression:
For a signal, x(t), its STFT is defined as:

X(tf)= J x(1) -w(t —1) - e dr

Figure: STFT Mathematical Formula

Where:
e w(t): Window function, used to extract short-time signals
o X(t,f): Spectrum at time t and frequency f
STFT Procedure

(1) Segmentation: Divide the signal into fixed-length segments (e.g., 20 ms).
(2) Windowing: Multiply each segment by a window function (e.g., Hamming
Window) to reduce distortion.

-126 -



(3) Fourier Transform: Compute the spectrum for each segment to obtain
time-varying frequency information.

\ v | .‘.'.‘|'|l|‘I'A'IlI‘|‘I'\'|'|"|"I'I|"|m”\W

AR ‘,T."“"'

SO TN
Wrdowrg

Cut the entire sound
into multiple voice
signals i

o Perform Fourier
transform to
obtain the sound

f{ \ : , /\ spectrum
Figure: STFT Illustration Diagram

4. Technical Advantages

(1) High Computational Efficiency: Simple spectral subtraction operations are
well-suited for real-time processing.

(2) Strong Applicability: Applicable in various noisy environments, particularly
in scenarios with stable background noise.

3.3.3 Challenges of Spectral Subtraction in Real-Time
Processing

Although spectral subtraction is theoretically simple and effective, several
challenges must be addressed in practical applications.

1. Accuracy of Noise Spectrum Estimation

The background noise spectrum may vary over time, reducing the applicability
of a fixed noise template.

Solution:

Implement a dynamic update mechanism to re-record the noise spectrum at
regular intervals and introduce adaptive algorithms to adjust the template
based on environmental changes.

-127 -



2. Speech Quality Degradation Due to Subtraction

Over-subtraction may lead to loss of valid speech components, causing
artifacts like “robotic” or “metallic” sounds.

Solution:

Precisely adjust the scaling factor «, to balance denoising performance with
speech quality, and apply spectral smoothing techniques to reduce auditory
discontinuities.

3. Real-Time Processing Constraints

In embedded systems, STFT and spectral calculations may cause processing
delays, affecting real-time performance.

Solution:

Utilize ARM® Helium technology to optimize FFT and matrix computations,
significantly improving processing efficiency.

Summary

Spectral subtraction, as a simple yet effective denoising technique, is widely used
in speech signal processing due to its efficient frequency-domain operations. This
chapter thoroughly explained the principles of spectral subtraction from
mathematical modeling to algorithmic details, while also analyzing real-world
challenges and corresponding solutions—laying a solid theoretical foundation for
subsequent system implementation.

3.4 Python-Based Denoising Simulation

To validate the feasibility of spectral subtraction before deploying on embedded
hardware, this chapter uses Python to build a simulation environment,
completing the entire process from background noise modeling to denoising
performance evaluation. Python's powerful audio processing tools and extensive
dataset support make the simulation process efficient and intuitive.

3.4.1 Purpose and Value of Python Simulation

-128 -



In real-world speech signal processing, embedded hardware development
requires extensive testing and tuning. Using Python for simulation offers the
following advantages:

1.

Rapid Validation of Theoretical Feasibility

Although spectral subtraction is mathematically grounded, its effectivenessin
real-world scenarios must be validated. Python provides a rapid prototyping
environment, allowing for convenient testing of denoising performance under
different parameter combinations.

Simplified Audio Processing

With tools such as Librosa and Scipy, audio loading, analysis, and processing
can be easily accomplished without manually implementing complex
functions.

Visualization and Parameter Tuning

Using visualization libraries such as Matplotlib, waveform and spectrograms
before and after denoising can be displayed, allowing designers to visually
compare performance and adjust parameters (e.g., scaling factor a).

3.4.2 Overview of Relevant Python Libraries

The following Python tools are used for key tasks in this chapter:

1.

Librosa

e Provides convenient audio loading and Short-Time Fourier Transform (STFT)
functionality.

e Supports spectral processing and reconstruction, suitable for denoising
and feature analysis.

Soundfile

e Enables efficient reading and saving of various audio formats (e.g., WAV,
FLAC).

e Suitable for handling large-scale audio data with simplicity and high
efficiency.

Scipy

e Offers mathematical tools such as Fourier Transform and filter design for
preprocessing.

e Useful for spectrum analysis and computation during the denoising
process.

Matplotlib

e Used for plotting waveforms, spectrograms, and other visualization charts.

-129 -



e Assists in showcasing denoising performance and visually comparing
processed vs. raw audio.

3.4.3 Python Implementation

1. Implementation Flow Overview
Step 1: Collect background noise as the baseline.
Step 2: Perform STFT on speech signal to convert itinto the frequency domain.
Step 3: Subtract the noise spectrum from the speech spectrum.

Step 4: Apply IFFT (Inverse Fourier Transform) to reconstruct the denoised
signal.

Background Store Noise
S -ER-E5

l Spectral subtraction

Store Sound
- IFFT
% - B - o - SDSCU’UIT] - sorefest - - ‘ ®

Figure: Overview of Python Implementation Workflow

2. Dataset Selection and Processing

To simulate real-world and diverse environments, the following public
datasets can be used for testing:

(1) Mozilla Common Voice (MCV):
Provides diversified voice samples suitable for speech processing tests.
(2) UrbanSound8K:

Offers urban noise data such as vehicle sounds and sirens, simulating
background noise.

Mixed samples generated by combining UrbanSound8K noise with MCV
speech are used as input for spectral subtraction testing.

3. Background Noise Collection

Accurate modeling of background noise spectrum is critical for spectral
subtraction, directly impacting denoising effectiveness.

-130 -



5.

Step 1: Record an audio file containing background noise, assuming the first
0.5 seconds contain only noise.

Step 2: Use librosa.load to load the audio file and extract the noise segment.

Step 3: Analyze the noise segment's spectrum to generate a noise template.

input_file = 'mix_noisy

output_file = 'denoise_spectral.wav'

y, sr = librosa.load(input_file, sr=None)

Figure: Loading a WAV Audio File

STFT Spectrum Computation

STFT converts time-domain signals into the frequency domain, useful for
analyzing speech and noise frequency components.

Step 1: Use Librosa’s stft function to compute the spectra of speech and noise.

Step 2: Decompose the spectrum into magnitude and phase for further
spectral operations.

y_stft = librosa.stft(y)

magnitude, phase = np.abs(y_stft), np.angle(y_stft)

Figure: Computing STFT with librosa.stft

Applying Spectral Subtraction

In the frequency domain, subtract the background noise spectrum from the
noisy speech spectrum.

Step 1: Calculate the average of the background noise spectrum.

Step 2: Use the spectral subtraction formula with scaling factor a to control
denoising strength.

noise_reduction_factor = 2.5
mean_noise_spectrum = np.mean(np.abs(noise_stft), axis=1) * noise_reduction_factor

Figure: Noise Spectrum Calculation

131 -



IFFT Audio Reconstruction
After denoising, reconstruct the time-domain signal using inverse STFT (ISTFT).
Step 1: Combine the denoised magnitude with the original phase.

Step 2: Use librosa.istft to reconstruct the waveform and save it as an audio
file.

threshold_factor = 1.0
magnitude_denoised = np.maximum(magnitude - (mean_noise_spectrum[:, np.newaxis] * threshold_factor), @)

y_stft_denoised = magnitude_denoised * np.exp(1lj * phase)

y_denoised = librosa.istft(y_stft denoised)

sf.write(output_file, y_denoised, sr)

Figure: Computing ISTFT with librosa.istft

3.4.4 Comparison of Denoising Results and STOI Evaluation

Visual Comparison

Use Matplotlib to plot waveforms and spectrograms before and after
denoising for intuitive comparison.

STOI Evaluation

The Short-Time Objective Intelligibility (STOI) score is an important metric for
evaluating speech intelligibility. The score ranges from 0 to 1, with higher
values indicating better intelligibility.

min_ length = min(len{clean), len(denoised))
clean = clean[:min_length]
denoised = denoised[:min_length]

stoi score = stoi(clean, denoised, sr clean, extended=False)

print(f"STOI: {stoi_score:.2f}")

STOI:

Figure: Short-Time Objective Intelligibility (STOI)

-132-



Summary

This chapter provided a detailed explanation of implementing spectral
subtraction denoising in Python, from foundational theory to full process
execution. Visualization and STOl evaluation validated the denoising
effectiveness. This simulation process provides theoretical verification and
parameter tuning references for implementation on embedded hardware, laying a
solid foundation for the subsequent deployment phase.

3.5 C Implementation on the M55M1 Development
Board

This chapter provides a detailed explanation of implementing spectral subtraction
denoising on the M55M1 development board, from simplified architecture design
to advanced structural optimization. The chapter emphasizes the core role of
Helium technology in implementation and highlights the advantages of modular
program design.

3.5.1 Application of Helium Technology in Denoising

Helium is ARM®'s M-Profile Vector Extension (MVE) technology, specifically
designed to accelerate DSP and machine learning tasks. It features high efficiency
and low power consumption. Its applications in spectral subtraction denoising
primarily include the following aspects:

1. Efficient FFT Computation

e Utilize the Arm®_rfft_fast_f32 function from the ARM® DSP library to
perform STFT and IFFT computations rapidly.

e Helium supports vectorized operations, enabling parallel processing of
multiple data elements to significantly accelerate Fourier transform
calculations.

2. Low-Power Operation
e Helium’s architecture is optimized for energy efficiency on embedded

devices, making it ideal for prolonged operation on resource-constrained
M55M1 boards.
3. Support for Vector Operations

-133-



e The matrix operations involved in spectral subtraction (e.g., spectral
subtraction) are efficiently executed using Helium’s SIMD (Single
Instruction Multiple Data) capabilities.

4. Optimized Data Access

e Helium provides efficient memory management features to reduce
frequent data load/store operations and further improve processing
performance.

3.5.2 Spectral Subtraction Architecture

Architecture Overview

In embedded systems, computational resources and memory are limited.
Therefore, a simplified spectral subtraction architecture must be designed to
ensure denoising effectiveness while minimizing computational complexity.

Characteristics of the Simplified Architecture:

1. Modular Processing
e The overall process is divided into several modules, including audio input,
STFT, spectral subtraction, IFFT, and audio output, facilitating
development, testing, and debugging.
2. Fixed Parameter Configuration
e Employ fixed configuration parameters (e.g., window size, overlap ratio) to
reduce computational load and enhance implementation efficiency.
3. Focus on Core Functionality
e Avoid overly complex denoising algorithms, focusing on background-
noise-based spectral subtraction to ease embedded implementation.

Processing Flow:

1. Audio Input
e Acquire noisy speech data and store it in a buffer.
2. STFT Spectrum Computation
e Apply Short-Time Fourier Transform to convert time-domain signals into
frequency-domain signals.
3. Spectral Subtraction
e Subtract background noise spectra from speech spectra.

-134-



4. IFFT Spectrum Reconstruction
e Use Inverse FFT to convert the frequency-domain signal back to the time
domain.
5. Audio Output
e Qutputthe processed speech signal, resulting in denoised audio data.

Specific Noise
Spectrum

l Spectral subtraction

Store Sound Clean
TFT tore Result IFET
$ - Buffer - S - Spectrum =Y Store Result o d -p Vocal

Figure: Spectral Subtraction Processing Flow

3.5.3 Spectral Subtraction Implementation

1. Initialization and Parameter Configuration

Initialization is the first step in implementing spectral subtraction. It includes
configuring the window size, buffers, and FFT processor. This ensures all
resources are allocated and ready for processing.

Initialization Steps:

(1) Define FFT window size and overlap ratio.
(2) Initialize the Helium FFT function library.
(3) Allocate buffers to store speech data, spectral data, and results.

Example Code:

// todo: STFT denoising function
v ApplySTFTDenoising( std: :vector< >& inputAudio, std::vector< >& outputAudio) {
size t frameSize = 1024;
size t hopSize = frameSize / 2;
std: :vector< > frame(frameSize);
std: :vector< > fftoutput(framesSize);

arm_rfft_fast_instance_f32 fftInstance;
arm_rfft_fast_init_f32(&fftInstance, frameSize);

Figure: STFT Initialization Code

2. STFT and Spectrum Computation

STFT is the key step that converts speech signals from the time domain to the
frequency domain. Helium’s optimized FFT functions can significantly
accelerate this step.

-135-



Implementation Steps:

(1) Segment the speech signal using a fixed frameSize with overlap defined by
hopSize.

(2) Apply a Hamming window to each frame to reduce spectral leakage.

(3) Use Arm®_rfft_fast_f32 to compute the FFT of each segment.

Example Code:

for (size_t i = @; i + frameSize <= inputAudio.size(); i += hopSize) {

for (size_t j = @; j < frameSize; ++j
frame[j] = < >(inputAudio[i + j]);

for (size_t j = @; j < frameSize; ++j
frame[j] *= @.54f - @.46f * cos(2 * PI_VALUE * j / (frameSize - 1));

4.

arm_rfft_fast_f32(&fftInstance, frame.data(), fftoutput.data(), @);

Figure: Calling arm_rfft_fast_f32 to Perform FFT

Spectral Subtraction Processing

The purpose of spectral subtraction is to remove the noise spectrum from the
speech spectrum. Helium technology optimizes this step for speed and
efficiency.

Implementation Steps:

(1) Compute the average background noise spectrum as a noise template.

(2) Subtract the noise spectrum from the speech spectrum, preserving only
the speech content.

(3) Apply non-negative constraint to avoid signal distortion.

Example Code:

noiseThreshold = 0.1f;
for (size_t j = @; j < fftoutput.size(); ++j) {
if (fftoutput[j] < noiseThreshold) {

fftoutput[j Q;

3
J

Figure: Executing Spectral Subtraction

IFFT and Signal Reconstruction

After spectral subtraction, IFFT is used to reconstruct the time-domain signal.
The final denoised speech signal is generated using overlap-add.

-136 -



Implementation Steps:

(1) Use Arm®_rfft_fast_f32 to convert the spectrum back to the time-domain
signal.

(2) Store the reconstructed signal in the output buffer and perform overlap-
add to smooth transitions.

Example Code:

arm_rfft_fast_f32(&fftInstance, fftoOutput.data(), frame.data(), 1);

for (size t j = @; j < frameSize; ++j) {
outputAudio[i + j] += < >(Frame[31);

¥

Figure: Calling arm_rfft_fast_f32 to Perform IFFT

3.6 Integration of the Keyword Spotting Module

This chapter describes the implementation of keyword spotting (KWS) on the
M55M1 platform and the integration of the denoising module to enhance
recognition accuracy. Modular design allows the system to adapt to various
environmental challenges, ensuring stable keyword detection performance.

3.6.1 Overview of the Keyword Spotting Model

By applying speech signal processing techniques, the system can detect target
keywords in real time and trigger corresponding actions.

Module Workflow:
1. Real-Time Audio Input

Use a microphone to capture speech and convert it into digital signals for
subsequent processing.

2. Buffered Input

Segment the speech signal into fixed-length frames and store them in a buffer
to minimize latency.

3. MFCC (Mel-Frequency Cepstral Coefficients) Extraction

-137 -



Real-time
Input Sound

Extract key frequency features from the speech signal to simplify model
training and inference.

Keyword Inference

Use a pre-trained model to classify the extracted features and determine
whether the target keyword is present.

Display Inference Results

Output the inference result in real-time and trigger subsequent application

Store sound
to buffer MFCC A
Inference
per second

Figure: Keyword Spotting Model Operation Flow

responses.

Display

Inference
Result

3.6.2 Integration with the Denoising Module

Integrating the denoising module with the keyword spotting module improves

recognition accuracy in noisy environments.

Integration Flow:

1.

Background Noise Recording

During system initialization, record background noise to generate a noise
spectrum template.

Insertion of Denoising Module

Insert the denoising module between the buffer and MFCC stages to ensure
clean audio is input to the MFCC extractor.

Post-Denoising Processing
The buffered data is high-quality, denoised audio ready for feature extraction.
Keyword Spotting Workflow

Use the denoised audio for feature extraction and model inference.

-138 -



Block One: Feature Extraction and Inference
Segment real-time audio and apply STFT denoising to enhance signal quality.
Step Analysis:

1. Acquisition of Audio Samples
e Use DMICRecord_AvailSamples() to confirm sufficient sample availability.
e Call DMICRecord_ReadSamples() to read audio data into the buffer.
2. Denoising Process
e Call ApplySTFTDenoising() to apply STFT-based denoising to the data.
3. Segmented Sliding Window Processing
e Apply a sliding window over the audio data for segment-based feature
extraction.

Block Two: Feature Extraction and Inference

Function and Objective: Extract features (e.g., MFCC) from denoised audio and
input them into the model for inference.

Step Analysis:

1. MFCC Feature Extraction:
e Use the preProcess module to compute MFCC features for each segment
and generate model-compatible input data.
2. Inference Execution:
e |nput the extracted features into the pre-trained model to determine if the
target keyword is present.
3. Result Processing and Output:
e If the inference result matches the target keyword, display a successful
detection message and trigger related application functions.

Code Example:

info("Inference %zu/%zu\n", audioDataSlider.Index + 1,
audioDataSlider.TotalStrides() + 1);

#if defined(

#endif

if (!preProcess.DoPreProcess(inferencelWindow, arm::app::audio::KwsMFCC: :ms_defaultSamplingFreq))

printf_err("Pre-processing failed.");
break;

Figure: Calling the MFCC Extraction Function

-139-



Key Explanations:

1. MFCC Extraction:
e MFCC is a crucial feature for keyword spotting, designed to emulate the
human auditory perception for capturing essential speech information.
2. Inference Model:
e Theinference process uses a pre-trained, lightweight CNN model.

3.6.3 End-to-End Execution Flow Summary

Step-by-Step Description:

1. Keyword Detection Initialization:
e The system begins real-time audio recording upon user confirmation.
2. Real-Time Audio Denoising:
e Segment and denoise the recorded audio using STFT and spectral
subtraction to remove background noise.
3. MFCC Feature Extraction:
e Extract MFCC features from the denoised audio segments as model input.
4. Keyword Inference and Result Handling:
e Use the model to detect the specified keyword and display the inference
result while triggering application functions.

3.6.4 Module Design Summary

The keyword spotting module, combined with denoising and speech feature
extraction, significantly improves detection accuracy and system stability. Its
modular design ensures good scalability and adaptability across various use
cases.

3.7 Program Architecture and Optimization Strategies

This chapter systematically analyzes the overall program architecture, detailing
the complete workflow from background noise processing to keyword spotting
(KWS). It further examines the role and technical implementation of each modaule.

-140 -



Finally, optimization and debugging strategies are proposed to further enhance

system performance and stability.

1.

3.7.1 Overall Program Architecture Design

Architecture Overview

The program is built around three core functionalities: background noise
processing, real-time speech denoising, and keyword spotting. Through a
modular design, the system achieves efficient coordination between
components. The main stages of the overall architecture are:

(1) Background Noise Processing:
Record and analyze background noise to generate a spectral template.
(2) Real-Time Speech Denoising:

Apply noise suppression to real-time audio recordings to enhance speech
quality.

(8) Keyword Spotting:

Extract speech features and feed them into a deep learning model to
detect the target keyword.

Architecture Advantages
e Modular Design:

Functionalities are separated into independent modules, enabling ease of
development and debugging.

e Real-Time Performance:

Accelerated processing based on ARM® Helium technology enables low-
latency audio processing.

e High Adaptability:

Capable of adapting to diverse noise environments and speech scenarios.

3.7.2 Roles and Implementation Details of Each Module

Real-Time Audio Processing and Denoising Module
(1) Role:

141 -



Process real-time audio and remove background noise.

(2) Technical Implementation:
a. Apply a sliding window technique to segment audio while maintaining
data continuity.
b. Use a spectral subtraction algorithm optimized with Helium-
accelerated FFT computation.
(3) Advantage:

Improves the speech signal-to-noise ratio (SNR) and reduces noise
interference in keyword spotting.

Keyword Spotting Module
(1) Role:

Extract speech features and perform inference to detect the target keyword.

(2) Technical Implementation:
a. Use MFCC (Mel-Frequency Cepstral Coefficients) to extract core
speech features.
b. Perform inference using a pre-trained deep learning model such as DS-
CNN.
(8) Advantage:

High recognition accuracy, suitable for real-time speech recognition in
embedded environments.

UART Interaction Module
(1) Role:

Facilitate user interaction to control background noise recording and
keyword detection initiation.

(2) Technical Implementation:
o Implement user command reception and feedback via the UART
interface.
o Includeinput error detection to improve system stability.
(3) Advantage:

Simple operation, suitable for human-machine interaction (HMI) in
embedded systems.

142 -



3.7.3 Optimization and Debugging Strategies

Denoising Module Optimization
(1) Dynamic Background Spectrum Update:
Periodically record background noise to adapt to environmental changes.
(2) Spectral Smoothing:
Use smoothing algorithms to reduce the impact of abrupt frequency
changes on speech quality.
Improving Keyword Spotting Accuracy
(1) Enhanced Feature Extraction:
Adjust MFCC parameters to extract more precise features.
(2) Data Augmentation for Model Training;:
Add training samples with varied background noise and speech rates to
improve model generalization.
. System Performance Tuning
(1) Computation Efficiency Improvements:
a. Use Helium acceleration for FFT, matrix computation, and other high-
frequency operations.
b. Reduce memory copy operations by leveraging pointer and reference
usage.
(2) Time and Resource Management:
Log execution times for each module to locate performance bottlenecks.

3.7.4 Logical Flow of System Operation

Initialization

Upon startup, the system prompts the user to record background noise, then
calculates and stores the spectral template.

Real-Time Audio Processing

Capture real-time audio, segment it with a sliding window, and apply spectral
subtraction for denoising.

Keyword Spotting

Extract features from denoised audio and perform model inference to check
for the target keyword.

Result Output

-143-



If the target keyword is detected, display a success message on the terminal
and trigger the application function.

3.7.5 Future Expansion Directions

1. Further Model Optimization:

Adopt more efficient model architectures (e.g., MobileNet) to balance
performance and accuracy.

2. Support for More Voice Commands:

Expand the model’s recognition scope to support multiple languages and
command sets.

3. Module Function Expansion:

Add noise classification capabilities to further improve the adaptability of the
denoising module.

Conclusion

This system integrates core technologies including background noise recording,
real-time audio processing, keyword spotting (KWS), and speech denoising, fully
leveraging the potential of embedded systems in speech processing applications.
Through optimization using the ARM® Helium instruction set, the system achieves
efficient Short-Time Fourier Transform (STFT) and spectral subtraction processing.
Combined with MFCC (Mel-Frequency Cepstral Coefficient) feature extraction
and machine learning models, it successfully delivers high-accuracy keyword
recognition.

During the design process, emphasis was placed on a modular system
architecture and a logically structured workflow, ensuring code readability and
maintainability. At the same time, by fine-tuning the denoising module and
improving inference accuracy, the system adapts to diverse noisy environments,
thereby enhancing its practicality and robustness.

Looking ahead, this architecture can be further enhanced by integrating more
advanced denoising algorithms—such as deep learning-based speech
enhancement—alongside more efficient inference models. This would enable its
expansion into a wider range of speech-related application scenarios, including
voice assistants, smart home control, and far-field speech recognition. Ultimately,

-144 -



this design sets a benchmark for embedded systems in intelligent speech
applications and provides a solid foundation for future research.

References
1. STFT -MathWorks

https://ww2.mathworks.cn/help/signal/ref/stft.html

- 145 -


https://ww2.mathworks.cn/help/signal/ref/stft.html

4 Smart Healthcare 1 — Drug Recognition

4.1 Case Introduction — Drug Recognition

Background:

In pharmaceutical manufacturing plants or medical environments, drug

recognition is a critical requirement.

1.

Accuracy and Efficiency

(1) Drugrecognition is directly related to patient health and safety. In large-
scale production, traditional methods can no longer meet operational
demands.

(2) Leveraging intelligent tools for automated recognition can significantly
reduce human error and improve efficiency.

Challenges of Traditional Methods

(1) Manual recognition is time-consuming and susceptible to fatigue or
environmental interference, which can lead to errors.

(2) Traditional methods cannot efficiently process large-scale drug data,
creating the need for embedded Al-based intelligent solutions.

Example Usage Scenarios

(1) Medical Applications:
a. Provide medical professionals and patients with real-time drug
identification to prevent health risks caused by incorrect medication.
b. Support patient self-service query systems, where scanning a drug
instantly displays detailed information such as dosage and
precautions.

(2) Pharmaceutical Manufacturing Plants:
a. Real-time labeling and sorting of different drugs during production to
prevent mixing.
b. Integrating a machine learning system into the production line to
monitor processes, reducing manual intervention and error rates.

- 146 -



4. Further Expansion

The potential of an intelligent drug recognition system goes beyond
recognition itself — it can be integrated with big data analytics to establish a
traceable drug circulation management platform.

Future enhancements could include voice-assisted functions to help visually
impaired individuals identify drugs, improving accessibility and usability.

(1) Support for Diverse Recognition:

The system can recognize multiple drugs with various appearances,
including capsules, tablets, and drugs of different colors and shapes.

(2) High Precision and High Efficiency:
a. Achieves arecognition accuracy rate of 95%, meeting the high
standards of the medical and pharmaceutical industries.
b. Equipped with high-speed processing capabilities to respond instantly
to drug recognition demands in production and medical scenarios.

(83) Embedded Hardware Support:

Utilizes NuMicro® microcontrollers for processing, ensuring high
performance and reliability in drug recognition.

This hardware platform features low power consumption and high
performance, making it suitable for embedded applications in medical
and industrial domains.

5. Demonstration and Results
(1) Tested Object Imaging:

The system can accurately identify and label captured capsules and
tablets, demonstrating high accuracy and reliability.

(2) Expected Development Board LCD Output:

On the embedded platform, an LCD displays drug recognition results in
real time, labeling each drug’s name and type for easy user verification.

-147 -



Expected results displayed on

the LCD of the development board
Test Iltems Postan

& .
0/ nuvoTon
- ‘ - © NuMicro® |

1
W

(

ey

W

Figure: Drug identification shows result.

6. Dataset and Model Training Process

Tool Selection:

(1) Labellmg: An open-source image annotation tool for drawing bounding
boxes and generating label files.

(2) Roboflow: An online tool that supports annotation, data augmentation,
and exporting datasets in multiple formats for different model training
pipelines.

Data Augmentation:

(1) Apply techniques such as rotation, cropping, and color transformation to
the dataset to increase diversity and improve model generalization.

Model Training

(1) Model Selection:
a. Utilize YOLOX Nano as the base model — a lightweight object
detection model optimized for embedded applications.
b. Offers a balanced trade-off between speed and accuracy, suitable for
deployment on resource-constrained embedded devices.
(2) Training Process:

-148 -



a. Fine-tune the model with training data to adapt to the specific drug
recognition scenario.

b. Apply data augmentation and regularization techniques during training
to mitigate overfitting.

Model Framework Conversion

(1) From PyTorch to TensorFlow Lite:
a. Train the model in PyTorch, then perform an intermediate conversion
to ONNX format.
b. Convertthe ONNX model to TensorFlow Lite format for optimized
performance and embedded device compatibility.

(2) Optimization and Testing:
a. Use TensorFlow Lite optimization tools (e.g., quantization, weight
pruning) to further reduce model size and improve runtime efficiency.
b. Deploy and test the model on the embedded development board to
validate accuracy and inference speed.

4.2 Dataset and Model Overview

4.2.1 Training Framework and Model

1. Training Framework:

PyTorch is employed as the training framework, leveraging its flexibility and
powerful model development capabilities to efficiently perform deep learning
model training and fine-tuning.

2. Training Model:

The training is based on the YOLOX-Nano model, a lightweight object
detection model specifically designed for embedded devices. It offers high
performance with low resource consumption.

-149 -



4.2.2 Dataset Preparation and Annotation Method

. Dataset Source:

The dataset is sourced from the National Cheng Kung University Hospital
drug dataset, containing diverse images of capsules and tablets to meet
variability requirements.

. Annotation Method:

Annotations are performed using the Labellmg tool, generating label files in
COCO JSON format to facilitate data loading and processing during model
training.

. Dataset:

(1) Training Set: 1,500 images
(2) Validation Set: 300 images

4.3 Training Environment and Hardware Overview

. Hardware Equipment

(1) NVIDIA RTX 3060 Ti GPU, providing high-performance GPU computing
capabilities.

(2) Supports CUDA technology, enabling full utilization of GPU acceleration
for deep learning model training.

. CUDA and PyTorch Versions
(1) CUDA Version: 11.8
(2) PyTorch Version: 2.4.1

. Training Data

The training dataset contains a total of 1,800 images, covering various drug
appearance features.

. Training Parameter Settings

(1) Epochs: 200

-150 -



(2) Batch Size: 32

5. Training Duration

Each complete training session takes approximately 1.5 hours on average.

4.4 Model Training

4.4.1 Model Training Workflow

1. Environment Setup:

Prepare the necessary software and hardware environment, including
training frameworks (PyTorch, TensorFlow) and hardware (e.g., GPU).

2. Dataset Preparation:

Use annotated datasets to ensure data accuracy and diversity for model
training.

3. TinyML Training:

Train the YOLOX-Nano model based on the PyTorch framework, generating
the trained model.

4. Model Quantization:

Convert the model using TensorFlow Lite, including INT8 quantization, to
produce a lightweight model suitable for embedded environments.

5. Vela Compilation:

Use the Vela compiler to further optimize the quantized model, generating a
TFLite flatbuffer file to improve execution performance.

4.4.2 Model Training Flow Diagram Explanation

Step 1: YOLOX-Nano Training

(1) The dataset is trained using the PyTorch framework and a pre-trained
model to generate the target model.
(2) Conversion from PyTorch to TensorFlow Lite.

-151 -



Step 2: Quantization

Use TensorFlow Lite to perform INT8 quantization and generate a
lightweight model.

1. yolox nano training 2. Lightweight model

S m 3. Vela
' . - Compilation
TinyML Training « + Lightweight model | P
E I.-'I TEF'ISQFF!UW I'-. Pre“alned : : ."’.- TEn'SDrFIOW Litﬂ -\\. TFL ﬂatbuﬁElm&
i\ Framework Madel B Converter @ ﬁ'
; » 1 || INT8 Quantization
ONNX ' Vela compiler
LN

! PyTorch E E """""""""
' { Framework | '

"\ (option) |/

Figure: Model training flow chart

Step 3: Vela Compilation

Compile the model with Vela to produce a TFLite flatbuffer optimized for
embedded devices.

4.4.3 Detailed Steps to Start Training

1. Create Python Environment:
(1) Create a Python 3.10 environment named yolox_nu:

conda create --name yolox_nu python=3.10
(2) Activate the created environment:
conda activate yolox_nu

(3) This step creates an isolated environment in Anaconda for the project.

-152 -



. Upgrade pip:

Upgrade pip and related packages:

python -m pip install --upgrade pip setuptools

. Install PyTorch:

(1) Install the correct CUDA and PyTorch versions; example for CUDA 11.8:

python -m pip install torch torchvision torchaudio --
index-url https://download.pytorch.org/whl/cull8

(2) Ensure the CUDA version (e.g., cu118) matches your hardware
configuration.

. InstallMMCV:

Choose proper version depends on your hardware. For CUDA 11.8 as an
example:

python -m pip install mmcv==2.0.1 -f
https://download.openmmlab.com/mmcv/dist/cull8/torch2.0/inde
X.html

. Install Other Required Packages:

Navigate to the project directory and install required packages:

python -m pip install --no-input -r requirements.txt

. Install YOLOX:

In the YOLOX project directory:

python setup.py develop

4.4.4 YOLOX-Nano Dataset Organization

. COCO JSON Format:

The YOLOX-Nano dataset must follow the COCO format, including training
and validation annotation files.

. Directory Structure:

(1) Ensure that data are put in directory as follows.

-153 -



Datasets/<your_dataset_name>/

|— annotations/

| |— train_annotation_json_file
| |— val_annotation_json_file
— train2e17/

| — train_img

— val2e17/

| — validation_img

(2) annotations/ stores JSON annotation files for training and validation.
(3) train2017/ stores training images.
(4) val2e17/ stores validation images.

4.4.5 YOLOX-Nano Model Training Steps

. Set Model Training Path:
Edit exps/default/yolox_nano_ti_lite_nu.py.

Update Dataset Paths:

self.data_dir = "datasets/your_coco"
self.train_ann = "your_train.json"
self.val_ann = "your_val.json"

Pre-trained Model Path:

retrain/tflite_yolox_nano_ti/320 DW/yolox_nano_320 DW_ti 1it
e.pth

. Start Training:

python tools/train.py -f <MODEL_CONFIG_FILE> -d 1 -b
<BATCH_SIZE> --fpl6 -o -c <PRETRAIN_MODEL_PATH>

(1) <MODEL_CONFIG_FILE>: Model configuration path, e.g.,
yolox_nano_ti_lite_nu.py

(2) <BATCH_SIZE>: Size of each training batch, e.g., 32

(3) <PRETRAIN_MODEL_PATH>: Full path to the pre-trained model

4.4.6 Model Conversion

PyTorch to ONNX:

-154 -



(1) Use the following command to convert the PyTorch model to ONNX
format

python tools/export_onnx.py -f <MODEL_CONFIG_FILE> -c
<TRAINED PYTORCH_MODEL> --output-name <ONNX MODEL_PATH>

(2) Parameter Description:
a. <MODEL_CONFIG_FILE>:Model configuration file path, for example,
yolox_nano_ti_lite_nu.py.
b. <TRAINED_PYTORCH_MODEL>: Trained PyTorch model path.
<ONNX_MODEL_PATH>: Output ONNX model storage path.

2. Create Calibration Data:
(1) Create calibration data to support quantification

python demo/TFLite/generate_calib_data.py --img-size
<IMG_SIZE> --n-img <NUMBER_IMG_FOR_CALI> -o
<CALI_DATA_NPY FILE> --img-dir <PATH_OF_TRAIN_IMAGE_DIR>

(2) Parameter Description:
a. <IMG_SIZE>: Inputimage size (e.g. 320).
b. <NUMBER_IMG_FOR_CALI>: Number of images used for calibration.
c. <CALI_DATA_NPY_FILE>: Output file path for calibration data.
d. <PATH_OF_TRAIN_IMAGE_DIR>:Image directory for generating
calibration data.

3. ONNXto TensorFlow Lite:
(1) Use the following command to convert the ONNX model to TensorFlow
Lite format:

nx2tf -i <ONNX_MODEL_PATH> -oiqt -qcind images
<CALI_DATA_NPY FILE> "[[[[©,0,0]]]]"

(2) Parameter Description:
a. <ONNX_MODEL_PATH>: The storage path of the ONNX model.
b. <CALI_DATA_NPY_FILE>:The path of the calibration data file.

4.4.7 Vela Compilation

1. Prepare Quantized Model:
Place the quantized modelin vela/generated/.

2. Modify Variables File:

-155 -



Openthe variables.bat file in the vela directory and set the following:

set MODEL_SRC_FILE=<your tflite model>
set MODEL_OPTIMISE FILE=<output vela model>

. Execute Compilation:

(1) Run the gen_modle_cpp script.

(2) Outputis generated at:
vela/generated/yolox_nano_ti_lite_nu_full_integer_quant_v
ela.tflite.cc

4.5 C++ Software Implementation

4.5.1 C++ Software Functional Design

. Overview of C++ Sample Code:

Provides sample code based on the hardware platform, demonstrating the
model inference workflow.

. C++ Software Flowchart:

Describes the complete process from data loading to model inference.
Introduction to C++ Software Design:

Details the division of program modules, including the data processing
module, model loading module, and inference module.

4.5.2 System Flowchart

Model Training (Blue Section)
(1) TinyML Training
a. Train theinitial model using the PyTorch framework.
b. Convertthe trained model to ONNX format, then perform quantization
(e.g., INT8 quantization) using TensorFlow Lite to generate a
lightweight model.

(2) Vela Compilation

-156 -



Optimize the TensorFlow Lite model using the Vela tool to generate a
compiled file (TFL flatbuffer file) suitable for embedded devices.

2. Hardware and Software Implementation (Red Section)
(1) C/C++ Software Implementation
Develop C/C++ software for the hardware platform to handle resource

configuration and model deployment.

(2) Hardware Development Board Programming
Use a hardware development board (e.g., NuMicro® M55M1) integrating
hardware accelerators (e.g., Ethos™-U55 microNPU) and CMSIS-NN
optimized kernels to execute TensorFlow Lite Runtime.

1. C++ Implementation

TinyML Training " ¢ Lightweight model CiC++ Code
N | T o - Hardware
t | TensorFlow [ Pretrained TensorFlow Lite | ° TFL Aatbuffer fle L Resource
Ly Framework | Model Converter ] J\-I/, 1-\[‘ Configuration
: _ &
; INTE Quantization 1 Softeare
ONNX ] Vela comipiler Deployment

C [ PyToren | e
'\ Framewok | B D e e Tl e
(Option) | . Device : Mubdicro® MS5M1 )

B ~ Ethos-US5 | Ethos.USS :

micralPL Drivesr

CMSIS-NM | | TFLY <}—

Optimized | | Runti :
2. Program to Board |: . .. uss | Kemes || UMM

CPU ‘
|Fm. kemels :
h, A

Figure: Overall System Flowchart

4.5.3 Verifying Development Board Hardware Requirements

1. LCD Module:
(1) Displays the user interface, providing a visual representation of the drug

recognition results.
(2) Configured to communicate with the EBI (External Bus Interface) for data

transfer.

-157 -



(3) Supports multiple resolution settings to suit various application

scenarios.
2. Image Sensor:

(1) Captures images of the drug appearance for recognition and
classification.

(2) Resolution settings ensure recognition accuracy.

(3) Configured to communicate via I°C (Inter-Integrated Circuit) for image
data transfer and module configuration.

LCD Module

O.. NUMAKER-TFT-LCDS V1.2

Figure: Development Board Module Usage

4.5.4 C++ Software Execution Flow

3. Initialization of Hardware, Model, and Framebuffer:
Initialize hardware resources to ensure the execution environment is ready.

(1) Configure resources required for model loading and inference.
(2) Initialize the framebuffer to manage image data streams.

4. Three Functions Corresponding to Framebuffer States:
(1) Image Capture: Use the camera module to capture drug images and store
them in the framebuffer.
(2) Image Preprocessing and Inference: Send the image data to the YOLOX-
Nano model for inference to obtain recognition results.

-158 -



(3) Model Result Post-Processing: Format the inference results and display
them on the development board LCD.

4.5.5 Internal Software Flow on the Development Board

1. Initialization:
(1) Hardware module initialization
(2) Modelinitialization
(8) Framebuffer initialization

2. Main Execution Process:
(1) Image Capture: If the framebuffer is empty, capture an image and store it.
(2) Model Inference: If the framebuffer is FULL, pass the image to
YOLOXNano for processing to obtain inference results.
(3) Post-Processing and Display: Format the results and display them on the
LCD.

3. Loop Execution:

In the main loop, reset the framebuffer and repeat the process.

= o
amera
Capture .
Image -
YOLOxnano
if Buffer Empty Buffer FULL Buffer_INF | POSt Processing

Capture Inage ———»/ Model Inference ———» &
Draw Result ‘

Initialization LCD
Show Result —>
L J TellWel

* Hardware Module |
AR Repeat main. -
Initialization epeatmainePP — peget §
* Model Initialization Frame BUFFER [
* FrameBuf Initialization

Figure: Flowchart of internal software of the development board

4.5.6 Image Processing Functions Overview

-159 -



. Camera Module Configuration (Image Sensor)

(1) Setup Steps:

In main.cpp, include ImageSensor.h to use the function prototypes
defined in this header file.

ImageSensor Functional Overview:
Function: int ImageSensor_lnit()
Initializes the image sensor, setting its frequency and timing parameters.

Function Definitions in ImageSensor.h:

(1) ImageSensor_lnit(void) — Initializes the image sensor.

(2) ImageSensor_Capture() — Starts image capture and saves data to the
specified buffer.

(8) ImageSensor_Config() — Configures image format, width, and height.

(4) ImageSensor_TriggerCapture() — Triggers an image capture operation.

(5) ImageSensor_WaitCaptureDone() — Waits for capture completion.

ImageSensor — Capturing Images

(1) ImageSensor_Capture() — Starts capturing images and stores them at a
specified memory address.

(2) ImageSensor_TriggerCapture() — Triggers image capture and sets the
shutter signal.

(8) ImageSensor_WaitCaptureDone() — Waits untilimage capture is complete
and handles timeout conditions.

4.5.7 Input Image Processing

Framebuffer in main.cpp

(1) Inthe main_task() function loop, the program continuously acquires new
frames from the camera.

(2) Uses the framebuffer to store captured frames before passing them to the
YOLOX-Nano model for inference.

(8) S_FRAMEBUF is used to manage both image data and detection results.

Framebuffer Functional Overview
(1) eFRAMEBUF_EMPTY (Empty Buffer):
a. When the framebuffer is empty, the main loop searches for an
available buffer to store new image data.
b. get_empty_framebuf() returns an empty buffer, after which:

-160 -



(a) If using the image sensor (CCAP), triggers ImageSensor_Capture()
to obtain new image data and store it in the buffer.
(b) If using static images, copies image data from memory into the
buffer.
c. The buffer state is then updated to eFRAMEBUF_FULL for subsequent
processing.

(2) eFRAMEBUF_FULL (Full Buffer):
a. When the framebuffer is full, the main loop checks and processes
these buffers.
b. get_full_framebuf() returns a full buffer, after which:
(a) Theimage is scaled to the model’s required input size (e.g., using
imlib_nvt_scale()).
(b) If quantization is required, image data is quantized to integer
format.
(c) The datais placed into the inference processing queue, and the
buffer state is updated to eFRAMEBUF_INF.

(3) eFRAMEBUF_INF (Inference Buffer):
a. When the framebuffer is in inference state, the main loop processes
completed inference results.
b. get_inf_framebuf() returns an inference buffer, after which:
(a) The inference results undergo post-processing (e.g., using
DetectorPostprocessing) to draw bounding boxes on the image.
(b) If a display device is present, the results are shown on the screen.
(c) Finally, the buffer state is reset to eFRAMEBUF_EMPTY for the next
processing cycle.

4.6 C++ Software Design — Model Inference

4.6.1 Inference Task Creation

1. Using FreeRTOS xTaskCreate Function
(1) Creates an inference task responsible for processing image data required
for inference.
(2) The task retrieves complete image data from the framebuffer when its
state is eFRAMEBUF_FULL and passes it to the inference process.

-161 -



4.6.2 Model Inference Workflow

Execution Condition:

When the framebuffer state is eFRAMEBUF_FULL, it indicates that the image
data is ready, and inference can begin.

Inference Steps:
(1) Setinference task parameters:
a. Assign the inference output buffer (responseQueue) and the post-
processing function (PostProcess).
b. Passthe number of columns and rows of the input image
(inputlmgCols, inputimgRows).
c. Bindthe source image dimensions (srclmgWidth, srcimgHeight) with
the complete image buffer.
(2) Add inference task to queue:
a. UsexQueueSend to pass the configured inferencelob to the inference
processing queue.
b. Update the framebuffer state to eFRAMEBUF_INF, indicating that the
frame has entered the inference stage.
. After inference completion:

The buffer state is updated to a new value (for example, reset or proceed to
the next stage of processing).

Inference completion flag:

The buffer state is set to eFRAMEBUF_INF, marking the inference result as
ready.

Data structure transfer:

The output results from the inference module are stored in the results section
of the buffer, awaiting calls from the post-processing module.

Post-processing trigger:

Based on the eFRAMEBUF_INF state, the post-processing module
automatically invokes the corresponding processing function to perform
tasks such as bounding box scaling and filtering.

4.6.3 Post-Processing and Drawing Workflow

-162 -



After completing model inference, the detected bounding boxes must be
processed, scaled back to the original image size, and filtered to retain valid
object detection results. The main steps are:

1. Scaling Bounding Boxes
(1) Function:

a. Scale the detected bounding boxes output by the inference network
(imgNetRows, imgNetCols) proportionally back to the original image
size (imgSrcRows, imgSrcCols).

b. Ensure bounding boxes are accurately mapped to their positions in
the original image.

2. Extracting Detection Results
(1) Function:

Parse the model’s output tensor to extract each object’s bounding box,
class ID, and confidence score.

(2) Note:

Exclude detection results below the predefined confidence threshold
(e.g., only keep bounding boxes with confidence > 0.5).

3. Performing NMS (Non-Maximum Suppression)
(1) Function:

a. Apply Non-Maximum Suppression (NMS) to remove highly overlapping
bounding boxes, retaining only those with the highest confidence
scores.

b. This step prevents multiple detections of the same object, improving
accuracy.

(2) Algorithm Steps:

a. Sortdetection boxes in descending order by confidence score.

b. Compare the Intersection Over Union (IOU) values; if greater than the
threshold (e.g., 0.5), remove overlapping boxes.

c. Retain the remaining bounding boxes as the final results.

4. Result Output
(1) Function:
a. Storethe final detection results (including bounding box coordinates
and object class) into the output vector (resultsOut) for subsequent
drawing and display.

-163 -



1.

(2) Application:
a. Display results on the development board’s LCD or pass them to other
processing modules.

Non-Maximum Suppression (NMS)

—

Figure: NMS Result

4.6.4 Configuring Label.cpp File

Adding Label Data:

(1) In Label.cpp, use the labelVec]] array to define all class names the model
can recognize.

(2) Based on the trained dataset, list all class names (e.g., TellWell, Postan,
Nacid) in sequence to ensure that inference results match the correct
object names.

Label Naming Rules:

(1) Each class name must be clear and accurate to match the dataset’s
labels.

(2) Avoid duplicate or ambiguous names to prevent confusion in the model’s
output.

Function Description:
(1) The values in the labelVec[] array are used for result mapping after
inference.

For each detected object, the class ID will be matched to the
corresponding labelin the array to display the correct name.

-164 -



4.6.5 Implementation Example

static const char *1labelsVec[] LABELS_ATTRIBUTE = {
"TelllWell",
"Postan",
"Nacid",

}s

1. This code defines a static constant character array containing all possible
label names the model can detect.

2. LABELS_ATTRIBUTE is an attribute specifier, possibly used for compiler
optimization or special memory alignment.

4.6.6 Notes

1. Ifthe model’s training dataset is updated or modified, remember to update
the label array accordingly; otherwise, inference results may not match the
correct class names.

2. After updating Label.cpp, recompile the program to ensure the new labels are
effective at runtime.

Completing the above steps allows you to continue with the subsequent
deployment steps as described in the firmware programming guide.

References:

YOLOX-Nano Training: https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8

COCO Dataset: https://cocodataset.org/#home

CUDA Toolkit: https://developer.nvidia.com/cuda-toolkit

OpenCV: https://opencv.org/

NMS Algorithm: https://ieeexplore.ieee.org/document/8100168

-165 -


https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8
https://cocodataset.org/#home
https://developer.nvidia.com/cuda-toolkit
https://opencv.org/
https://ieeexplore.ieee.org/document/8100168

5 Smart Healthcare 2 — Fall Detection

5.1 Case Introduction — Fall Detection

5.1.1 Project Overview

This system utilizes the Nuvoton M55M1 development board to classify three
human postures: fall-down, sitting, and standing.

The dataset was sourced from Roboflow, and the YOLOX-Nano model was
trained under the PyTorch framework.

The trained model was subsequently converted and quantized into the
TensorFlow Lite format, followed by Vela compilation for deployment on the
development board.

Finally, both the C software and the model were programmed onto the board
using the KEIL IDE.

By applying machine learning to determine whether a person has fallen within
the detection area, this system not only reduces the demand for medical
personnel but also enables faster detection of emergency situations.

Figure: Successful detection of fall-down state on development board

- 166 -



Figure: Successful detection of standing state on development board

5.2 Overview of Fall Detection Techniques

Machine learning-based fall detection models can generally be implemented
using two methods: Keypoint Detection and Object Detection.

This report describes both approaches and explains why Object Detection was
selected.

-167 -



1. Keypoint Detection

In the keypoint detection approach, the human torso and limb positions are
annotated in the image.

Figure: Example annotation using Keypoint Detection

This method offers higher accuracy for posture recognition but requires a more

complex labeling process and a significantly larger dataset to achieve reliable
classification.

Itis more suitable for applications where posture variations are minimal—such
as distinguishing between good and bad sitting postures.

2. Object Detection

The object detection approach follows the same principles as general object
detection.

During annotation, the target in the image is simply enclosed in a bounding box
and labeled with its posture class.

-168 -



Figure: Example annotation using Object Detection

This process is relatively straightforward, and in this application—where the
three posture classes (fall-detected, sitting, standing) differ significantly—it still
delivers excellent accuracy.

5.3 Using an Open-Source Dataset from Roboflow

The dataset was sourced from Roboflow Universe, where a suitable dataset for
fall detection training was identified. It was downloaded in COCO JSON format to
be directly used for training under the PyTorch framework. The selected dataset,
Fall Detection Dataset, categorizes target postures into three classes:

Figure: Example training image for “Fall-detected” in Fall Detection Dataset

-169 -



Figure: Example training image for “Sitting” in Fall Detection Dataset

Figure: Example training image for “Standing” in Fall Detection Dataset

The dataset is organized as follows:

e Training Set: 731 images
e Validation Set: 208 images
o TestSet: 104 images

-170 -



54 Model Training on PC Using the Anaconda
Environment

5.4.1 Training Environment Installation Method

Follow the steps below in sequence:

1.

Create a Python environment

$ conda create --name yolox_nano python=3.12
$ conda activate yolox_nano

This command creates and activates a new environment named yolox_nano
in Anaconda.

Upgrade pip
$ python -m pip install --upgrade pip setuptools
Install PyTorch from the official website

$ python -m pip install torch torchvision torchaudio --
index-url https://download.pytorch.org/whl/cull8

Install mmecv

$ python -m pip install mmcv==2.0.1 -f
https://download.openmmlab.com/mmcv/dist/cull8/torch2.0/inde
X.html

Install other required packages

Navigate to the designated directory and execute:

$ python -m pip install --no-input -r requirements.txt
Install YOLOX

$ python setup.py develop

5.4.2 Model Training Configuration

Organize the dataset in the following structure under the Datasets directory:

-171 -



Datasets/
<your_dataset_name>/

annotations/
<train_annotation_json_file>
<val_annotation_json_file>

train2017/
<train_img>

val2e17/
<validation_img>

In the training configuration file yolox_nano_ti_lite_nu.py. Specify the paths for
the training and validation datasets. Configure training parameters.

.data_dir =

.train_ann = "trai
.val_ann =

.num_classes
.warmup_ep

.max_epoch

Figure Setting relevant code in the training file yolox_nano_ti_lite_nu.py

Set the number of iterations appropriately (e.g., 500 iterations requiring
approximately 3 hours). In the class definition file coco_classes.py. Define the
dataset categories: none, fall-detected, sitting, standing.

COCO_CLASSES

Figure: Set the relevant code in the class file coco_classes.py

Finally, execute the training command:

-172 -



$ python tools/train.py -f
exps/default/yolox_nano_ti_lite nu.py -d 1 -b 64 --fpl6é -0 -c
pretrain/tflite_yolox_nano_ti/320 DW/yolox_nano_320 DW_ti_lite
.pth

After training, inference can be performed using the test set images to verify
accuracy.

Figure: Model inference using the test set image Standing

-173-



Figure: Model inference using test set images Sitting and Fall-down

In this example, the PyTorch-trained YOLOX-Nano model achieved 90.3%
accuracy, with only 10 misclassified images out of 104 test images.

5.4.3 Model Framework Conversion

1. Convert the trained checkpoint (.ckpt) to ONNX (.onnx):

$ python tools/export_onnx.py -f
exps/default/yolox_nano_ti_lite nu.py -c
YOLOX_outputs/yolox_nano_ti_lite nu/latest_ckpt.pth --
output-name

YOLOX_outputs/yolox_nano_ti_lite nu/yolox_nano_nu_fall.onnx

2. Convert the ONNX file to TensorFlow format and quantize to TensorFlow Lite
(.tflite):

$ python demo/TFLite/generate_calib_data.py --img-size 320
320 --n-img 200 -o
YOLOX_outputs\yolox_nano_ti_lite_nul\calib_data_320x320 _n200.
npy --img-dir datasets\COCO\train2017

174 -



$ onnx2tf -i
YOLOX_outputs/yolox_nano_ti_lite_nu/yolox_nano_nu_fall2.onnx
-oiqt -qcind images

YOLOX outputs\yolox nano ti lite nulcalib_data 320x320 n200.
npy "“[[[[e,0,0]]1]1]1" "[[[[1,1,1]]1]]"

5.4.4 Vela Compilation Procedure

1. Place the quantized model into the vela/generated/ directory and edit the
variables.bat file in the vela directory:

$ set
MODEL_SRC_FILE=yolox_nano_nu_fall_ full_integer_quant.tflite

$ set
MODEL_OPTIMISE_FILE=yolox_nano_nu_fall full integer_quant_ve
la.tflite

2. Execute the gen_model_cpp script.
The generated output will appear in:

vela\generated\yolox_nano_ti_lite nu_fall full integer_quant
_vela.tflite.cc

5.5 Inference Program System Flow on Development
Board

The C language program system flow and its explanation mainly consist of three
steps:

1. Initialization of hardware and model.
2. Execution of operations depending on different states of the frame buffer.
3. Updating the frame buffer state, then repeating steps 2-3.

The following provides detailed explanations along with relevant code.

-175-



FrameBuf
Status

4

Dispatch task
to functions

~

J/

!

Inference and

Post Processing
N

~\

S

!

(" Draw Detection )

Obtain Adjust Input
Input Image Image Size Boxand

 LabelText j
|

f ™\

Display Result

\ J

|
Update

FrameBuf
Status

Figure: C language program system flowchart

5.5.1 Initialization of Hardware and Model

Initialize hardware resources and the model, includ configuring the frame buffer
size and format, and setting the frame buffer state to EMPTY, indicating that it is

available for storing new images.

-176 -



static void omv_init()

image_t frameBuffer;

int i;

frameBuffer.w GLCD_WIDTH;

frameBuffer.h = GLCD_HEIGHT;

frameBuffer.size = GLCD_WIDTH = GLCD_HEIGHT == 2;
frameBuffer.pixfmt PIXFORMAT_RGB565;

_fb_base = fb_array;

_fb_end = fb_array + OMV_FB_SIZE - 1;

_fbhalloc _fb_base + OMV_FB_SIZE + OMV_FB_ALLOC_SIZE;
_Jjpeg_buf = jpeg_array;

fb_alloc_init0();

framebuffer_init0();

framebuffer_init_from_image(&frameBuffer);

for (i = ; 1 < NUM_FRAMEBUF; i++)
;
1

s_asFramebuf[i].eState = eFRAMEBUF_EMPTY;

framebuffer_init_image(&s_asFramebuf[0].framelImage);

Figure: Initialization of hardware and model code

5.5.2 Image Input Acquisition

Capture images from the camera or load images from embedded storage and
update the frame buffer state to FULL.

-177 -



defined (__USE_CCAP__)

f defined(__PROFILE__)
CCAPStartCycle = pmu_get_systick_Count();
dif

ImageSensor_Capture((uint32_t) (emptyFramebuf->frameImage.data));

f defined(__PROFILE__)
U64CCAPEndCycle = pmu_get_systick_Count();

info( A apture les %L1lu \n", (ub4CCAPEndCycle - ub4CCAPStartCycle));

image_t srclmg;

srcImg.w = TMAGE_WIDTH;

srcImg.h IMAGE_HEIGHT;
srcImg.data = (uint8_t *)pu8ImgSrc;
srcImg.pixfmt = PIXFORMAT_RGB88S;

IMAGE_WIDTH;
IMAGE_HEIGHT;

imlib_nvt_scale(&srcImg, &emptyFramebuf->frameImage, &roi);

Figure: Image input acquisition code

5.5.3 Input Image Resizing

Resize the input image to the model input size and update the frame buffer state
to INF.

-178 -



if (fullFramebuf)

image_t resizelmg;

roi ;
ro ;
roi fullF 2buf->framel
roi.h fullF 2buf->framel

resizeImg.w = inputImgCols;

elmg.
re elmg.dat (uint8_t =)inputTensor->data.data;
resizeImg.pixfmt = PIXFORMAT_RGBE888;

#if defined(__PROFILE_

#endif

imlib_nvt_scale(&fullFramebuf->frameImage, &resizelmg, &roi);

Figure: Input image resizing code

5.5.4 Processing Images Pending Inference

Assign tasks to relevant sub-functions. The operations include performing
inference and post-processing, drawing object detection bounding boxes,
displaying results on the LCD monitor, and updating the frame buffer state back
to EMPTY.

if (fullFramebuf)

image_t resiz
roi

ramebuf->framelmage.w;

ramebuf->frameImage.h;

resizeImg.w inputImgCols;

elmg. inputImg

re elmg. = (uint8_t *)inputTensor->data.data;
resizelmg.pixfmt = PIXFORMAT_RGB888;

#if defined( JFILE__)
ub artCycle = pmu_get_systick_Count();
#endif

imlib_nvt_scale(&fullFramebuf->frameImage, &resizeImg, &roi);

Figure: Image processing for inference code

-179 -



if (infFramebuf)

s(infFramebuf->results, &infFramebuf->frameImage, label

#if defined

2BottonRight (infFramebuf->frameImage.w -

2BottonRight (inf shuf->frameImage.h -
#if defined(__PROFILE
artCycle = pmu_get ick_Count();
Display_FillRect((uintlé6_t *)infFramebuf->frameImage.dat
if defined(__PROFILE__)

ub4EndCycle = pmu_get

info("dis

ub4dPerfFrame

Figure: Image processing for inference code

(uinté4_t) pmu_get_systi Count() > ué4PerfCycle)

info( n", ub4PerfFrames / EACH_PERF_SEC);
if defined
, Ub4PerfFrames / EACH_PERF

)32BottonRightY = (frameBuffer.h + (2 * FONT_HTIGHT) -

Lay_ClearRect(C_WHITE, &
ay_PutText(
zDisplayT 5

Len(szDispl ext),

ameBuffer.h + FONT_HTIGHT,

ub4Perf = (uinté4_t)pmu_ge ic ount() + (uinté4_t)(Syster ck * EACH_PERF_S
ub4PerfFrames = 0;

PresentInference st (infFramebuf->results, labels);
infFramebuf->eState = eFRAMEBUF_EMP

Figure: Image processing for inference code

-180 -



5.5.5 Model Inference and Post-processing

The program sequentially:

Acquires the model input tensor.
Executes inference.
Obtains the model output tensor.

o b

Applies post-processing to interpret inference results.

TfLiteTensor *inputTensor = model.GetInputTensor();

TflLiteTensor #outputTensor = model.GetOutputTensor(0);

if (!'inputTensor->dims)

ntf_err("Invalid i

askDelete(nullptr);

if (inputTensor->dims->size <

printf_err ("I te
Delete(nullptr);

= model.GetInputShape(0);

int inputImgC i LS - a a YoloXnanoNu

t int inputImgR = inputShape atalarm::app::YoloXnanoNu::

arm::app::object_detection::DetectorPostprocessing postProcess(

Figure: Model inference and post-processing code

5.5.6 Drawing Detection Bounding Boxes and Label Text

Retrieve relevant information from inference results and render bounding boxes
and labels on the image.

imlib_draw_rectangle(drawImg, result.m_x0, result.m_yO, result.m_w, result.m_h, COLOR_BS5_MAX, 1, false);

Figure: Drawing detection bounding boxes code

imlib_draw_string(drawImg, result.m_x8, result.m_y@ - , labels[result.m_cls].c_str(), COLOR_BS_MAX,

false, false, false, 0, false, false);

Figure: Drawing label text code

-181 -



5.5.7 Displaying Results on LCD Monitor

Output the processed image with annotations to the LCD monitor.

#if defined (__USE_DISPLAY__ )
ispRect.u32ToplLef
ispRect.

ispRect.u ottonRightX (infFramebuf->frameImage.w - 1);

'

sDispRect.u32BottonRightY (infFramebuf->framelmage.h - 1);

#if defined(__PROFILE__)

ub4StartCycle = pmu_get_systick_Count():
#endif

Display_FillRect((uintlé_t *)infFramebuf->framelmage.data, &sDispRect);

#if defined(__PROFILE__)

ub4EndCycle = pmu_get_systick_Count();

info("display imac les %Llu \n", (ub4EndCycle - ub
#endif

#endif

ub4PerfFrames ++;

if ((uinté4_t) pmu_get ick_Count() > ué4PerfCycle)
;
1

info("Total inf ate: %Llu\n", ué4PerfFrames / EACH_PERF_SEC);

Figure: Displaying results on LCD monitor code

5.6 Conclusion and Future Development

5.6.1 Conclusion

This fall detection system effectively leverages the Roboflow dataset in
combination with the YOLOX-Nano model on the Nuvoton M55M1 development
board. The solution provides a faster and more resource-efficient approach to
detecting falls, thereby improving healthcare quality. By applying Full-INT8 model
quantization technology and Vela compiler optimization, both inference speed
and accuracy were improved, achieving over 90% detection accuracy in testing.

-182 -



5.6.2 Future Development

This current development only uses a simple camera for image capture. Future
enhancements may incorporate more advanced cameras (e.g., 3D cameras) or
adopt Keypoint-Detection methods to increase the variety of pose recognition
and accuracy, thereby enabling more professional and precise applications.

References:

e YOLOX-Nano Training
https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8

e Roboflow Fall Detection Dataset
https://universe.roboflow.com/search?qg=class:fall-detected

e Roboflow Keypoint-Detection Introduction
https://blog.roboflow.com/pose-estimation-algorithms-history/

-183-


https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8
https://universe.roboflow.com/search?q=class:fall-detected
https://blog.roboflow.com/pose-estimation-algorithms-history/

6 Smart Home Application 1 — Waste Classification

6.1 Case Study — Waste Classification

6.1.1 Introduction and Application

1. Technical Foundation:

(1) Implementation of waste classification image recognition using the
Nuvoton M55M1 development board. This system integrates a camera
module, enabling effective recognition of different types of waste and
providing rapid classification. Through real-time display, the system offers
detailed information on the identified waste categories.

(2) YOLOX-Nano Model Training: By applying deep learning techniques, a
waste classification model was trained to achieve accurate recognition
across multiple waste categories. The trained model was then deployed
onto the M55M1 development board for application.

2. Practical Application Scenarios:

(1) In ahousehold environment, waste classification often poses challenges
for children, primarily due to significant differences in color, material, and
size among various types of waste. This may result in misclassification or
incomplete sorting.

(2) With this waste classification system, children simply place the waste
item in front of the camera. The screen instantly displays the waste
category and provides visual reminders and guidance, thereby ensuring
accurate classification.

6.1.2 Advantages and Features

1. Real-time Performance: Enables rapid image processing and result display.

2. EducationalValue: Enhances children’s awareness of waste classification
and fosters environmentally conscious behavior from an early age.

3. Accuracy: Relies on the high precision of deep learning models, effectively
minimizing errors inherent in manual classification.

-184 -



6.1.3 Objectives and Achievements

1. Accuracy:

The system was able to classify four categories of waste (paper, plastic
bottles, aluminum cans, and paper cups) with an accuracy rate of 90.1%,
demonstrating high effectiveness in practical applications.

2. Model Size:

The trained model was kept under 2 MB, fully compliant with development
board flash memory standards, and capable of running smoothly in
embedded environments.

3. Classification Capability:

Supports simultaneous recognition of multiple waste types, significantly
improving the efficiency and practicality of waste classification.

6.1.4 Illustration

The figure below demonstrates the expected results in practical applications.
The display shows real-time image processing results where the system
successfully identifies and annotates different waste types (e.g., aluminum
cans, plastic bottles).

-185 -



Figure: Image recognition demo results

6.2 Dataset and Model Training

6.2.1 Dataset

. Tool: The annotation and labeling of data were performed using Labellmg.
. Data Splitting:

(1) Training Set: A total of 378 images.

(2) Validation Set: Atotal of 36 images.

(8) Test Set: Atotal of 19 images.

6.2.2 Model Training

. Model: The YOLOX-Nano (Light Model) was adopted, which is well-suited for
lightweight embedded systems.

. Virtual Environment: A virtual environment was created using Anaconda to
ensure modularity and isolation during development.

. Training Framework: Model training was conducted using the PyTorch deep
learning framework, providing flexibility in model construction and training
workflows.

-186 -



4. Dataset Format: The dataset was managed in COCO JSON format to
maintain compatibility with mainstream model frameworks.

6.2.3 Dataset Preparation Workflow

The dataset was primarily prepared through self-collected photographs, followed
by annotation and training. The detailed steps are as follows:

1. Photo Collection:
(1) Collect a sufficient number of images as training data (approximately 400
photographs were used in this case). A larger dataset generally results in
better model training performance.

2. Data Annotation:
(1) Use the Labellmg tool for image labeling, marking the target objects in
each photograph.
(2) This tool can be downloaded from the Internet. It is simple and user-
friendly, making it suitable for annotating custom datasets.

3. Format Consistency Check:
(1) Ensure that the annotated dataset matches the format requirements for
model training. In this case, the COCO JSON format was adopted, which
is supported by most deep learning frameworks.

4. Format Conversion:
(1) Convert the original YOLO format annotations into COCO JSON format
using a format conversion tool, so that the dataset can be used for model
training.

6.2.4 Downloading and Installing Labellmg

1. Download Link:
(1) Navigate to the following GitHub page to download the Labellmg tool:
Labellmg Releases.

2. Version Selection:
(1) On the release page, click to download the compressed file
windows_v1.8.1.zip corresponding to Binary v1.8.1.

-187 -



3. Installation and Execution:
(1) Extract the downloaded file, enter the extracted directory, locate the
executable labellmg.exe, and double-click to launch the annotation tool
interface.

4. Tool Features:
(1) Cross-platform Support: Compatible with Windows, Linux, and macOS.
(2) Ease of Use: Provides rapid image annotation, making it suitable for
beginners performing image labeling tasks.
(3) Flexible Format Options: Supports multiple output formats (e.g., PASCAL
VOC and COCO JSON), facilitating integration with mainstream deep
learning frameworks.

Binary v1.8.1 (een

windows v1.8.1.zip

v Assets 2

@Somce code (zip) Dec 3, 2018
@Source code (tar.gz) Dec 3, 2018
b 99 M s g7 12 @R 7 112 people reacted

Figure: Label tool download

5. Setting Dataset Path and Storage Location
(1) Select the Dataset Source Folder:

Click the Open Dir button and choose the source folder of the dataset.
This folder should contain all the image files to be annotated.

(2) Selectthe Annotation Results Storage Location:

Click the Change Save Dir button to specify the directory where the
annotation files will be saved after completion.

(8) Confirm the Settings:

Once the paths are configured, the file list area at the bottom right will
display all images pending annotation. Verify that all images are correctly
loaded.

6. Illustration

-188 -



The figure illustrates the positions and functions of the operational buttons,
guiding users to quickly complete the configuration of the dataset directory and
the storage directory.
Step1: The path of the dataset
that needs to be labeled

Step2: The path of i
stored dataset

¥
S Ko
¥ ~

Step3: After setting, all the -
- photos to be labeld

will appear in the lower  ©
right corner St

Figure: Label Tool Tutorial

7. Selecting the Annotation Format

Select the annotation format according to the model training requirements.
Commonly used formats include PascalVOC, YOLO, and CreateML. Their
characteristics and use cases are as follows:

(1) PascalVOC Format:

a. Storage Method: Stored in XML files, including image file name,
dimensions (height, width), and details of each bounding box (class
and coordinates).

b. Application Scenario: Suitable for training deep learning models using
TensorFlow and Keras frameworks.

(2) YOLO Format (Used in This Case):

a. Storage Method: Plain text files, simple and efficient. Each line
represents one bounding box, in the format: <class_id> <x_center>
<y_center> <width> <height>
e class_id: The class ID of the bounding box.

e x_center, y_center: Coordinates of the bounding box center
(relative to image size).

e width, height: Width and height of the bounding box (relative to
image size).

-189 -



b.

Application Scenario: Designed for the YOLO (You Only Look Once)
family of models, optimized for real-time object detection.

(3) CreateML Format:

a.

Storage Method: Stored in JSON files, describing bounding box
positions, classes, and related data for each image.
Application Scenario: Suitable for Apple’s CreateML platform,
facilitating training and deployment in macOS environments.

(4) Format Selection Recommendation:

a.
b.
c.

For TensorFlow or Keras: Use PascalVOC format.
For YOLO training: Use YOLO format (selected in this case).
For iOS application development: Use CreateML format.

. Setting Annotation Categories and Performing Annotations

(1) Create the Annotation Categories File:

a.

b.

Create a text file named label.txt and list all the categories to be
annotated within the file (e.g., Aluminum Can, Paper, Paper Cup,
Plastic Bottle).

This file will serve as the category reference for the annotation tool,
ensuring correct selection of categories during annotation.

(2) Start Annotation:

a.

Click the Create RectBox button on the toolbar (shortcut key: W) and
use the mouse to drag and draw bounding boxes around the target
objects.

Once the bounding box is created, a prompt window will appear,
allowing the user to select or input the category name for the
annotated object.

(3) Annotation Verification:

a.

After annotating an image, the Box Labels area on the right will display
all annotated objects and their corresponding categories.

The user can verify whether the bounding boxes are correctly assigned
to the intended categories and make adjustments if necessary.

(4) Nustration:

a.

Left Image: Displays the category list within the tool, including items
such as Aluminum Can, Paper, Paper Cup.

-190 -



b. RightImage: Shows an example of a bounding box and its
corresponding category input operation, where the selected object is
labeled as Aluminum Can.

s Lwn
Hw it
lame

T ot i

All labeled Items = Set hounting box
i and label item

Puws bome
Fats tuste
T dapar

T P

Sarw

Figure: Annotation Method and Class Usage

9. Converting YOLO Format to COCO JSON Format
(1) Format Conversion Requirement:
a. After completing annotations in YOLO format, a Python script must be
used to convert YOLO format into COCO JSON format.
b. Reason: The COCO JSON format is widely supported across deep

learning frameworks and offers higher compatibility for complex
object detection tasks.

(2) Using the Conversion Script:
a. The provided script file yolo2cocojson.py can be used for format
conversion:

https://drive.google.com/file/d/15cSqOMiBjgwUIwIn0Z_0t2c51vUY2jh
6/view?usp=sharing

b. Users only heed to make minor modifications according to their
specific dataset requirements, after which the script can
automatically complete the conversion process.

10. Configuring the Conversion Script
(1) Add Annotation Categories:

Update the categories section of the script according to the annotation
categories and their order. Example illustration provided in the figure.

-191 -


https://drive.google.com/file/d/15cSq0MiBjgwUIwJn0Z_0t2c51vUY2jh6/view?usp=sharing
https://drive.google.com/file/d/15cSq0MiBjgwUIwJn0Z_0t2c51vUY2jh6/view?usp=sharing

categories = |

{"id": @, "name": "class1"},
{"id": 1, "name”: "class2"},
{"id": 2, "name”: “"class3"},
{"id": 3, "name”: "class4"}

Figure: Setting Classes and Their IDs

(2) Configure Dataset Paths:
a. Update the script with the correct paths to the images and annotation
files.
b. The directory names must be exactly Images and Labels, and each
image must have a corresponding annotation file with the same

filename.
images dir = images
labels dir = "/labels”

Figure: Configuring Image and Annotation File Paths

6.3 Evaluate TFLite int8/float Model (Overview)

6.3.1 Model Performance Evaluation

1. Purpose of Testing:
(1) To evaluate the accuracy and efficiency of the trained model, focusing on:

a. Accuracy (AP, Average Precision): Measures prediction accuracy for

each class.
b. Intersection over Union (loU): Evaluates the overlap between the

predicted bounding box and the ground truth bounding box.

-192 -



BRAELZEEENRERTE

U - s wreserneense

Figure: Definition of loU

2. Evaluation Method:
(1) A Python scriptis used to run inference on the model and gather
performance metrics for each category.
(2) Both integer-quantized TFLite models and float TFLite models are
supported for evaluation.

6.3.2 Evaluation via Command Line

1. Basic Command Format:

$ python demo/TFLite/tflite_inference.py \
-m <FULL_INTEGER_QUANT_TFLITE> \
-S <SCORE_THR> \
-1 <PATH_OF_IMAGE> \
-a <PATH_OF_VAL_ANNOTATION_FILE>

2. Example Command:

python demo/TFLite/tflite_inference.py \

-m
YOLOX outputs/yolox_nano_ti lite nu/vox_nano_nu_hg full inte
ger_quant.tflite \

-Ss 0.6 \

-i datasets/hagrid_coco/val2017/0001.jpg \

-a hagrid_coco/annotations/hagrid_val.json

6.3.3 Command Parameter Explanation

1. FULL_INTEGER_QUANT_TFLITE:

-193 -



Path to the integer-quantized TFLite modelfile (.tflite).
2. SCORE_THR:

Detection confidence threshold; only results with scores above this value will
be kept (example: 0.6).

3. PATH_OF IMAGE:
Path to the image file used for inference testing.
4., PATH _OF VAL ANNOTATION_FILE:

Path to the validation annotation file containing ground truth bounding box
data (.json format).

6.3.4 Model Performance Testing

1. Single Image Test Command:

$ python demo/TFLite/tflite_inference.py \
-m <FULL_INTEGER_QUANT_TFLITE> \
-S <SCORE_THR> \
-1 <PATH_OF_IMAGE> \
-a <PATH_OF_VAL_ANNOTATION_FILE>

2. Example Command:

python demo/TFLite/tflite_inference.py \

-m
YOLOX outputs/yolox_nano_ti lite nu/vox_nano_ti_lite nu_full
_integer_quant.tflite \

-Ss 0.6 \

-i datasets/hagrid_coco/val2017/0001.jpg \

-a hagrid_coco/annotations/hagrid_val.json

6.3.5 Parameter Summary

1. FULL_INTEGER_QUANT_TFLITE:
File path of the integer-quantized TFLite model (.tflite).

2. SCORE_THR:

-194 -



Detection confidence threshold; only results above this threshold are
retained (example: 0.6).

. PATH_OF_IMAGE:

Full path of the test image (example:
datasets/hagrid_coco/val2017/0001.jpg).

. PATH_OF_VAL_ANNOTATION_FILE:

Validation annotation file containing ground truth bounding boxes (example:
hagrid_coco/annotations/hagrid_val.json).

6.4 C++ Software Flow

6.4.1 System Initialization

. Main File Locations:

BoardInit.cpp and mpu_config M55M1.h

. Hardware Resource Configuration:

(1) Configure essential system hardware resources such as clock, UART,
memory, and NPU (Neural Processing Unit).

(2) Configure the Memory Protection Unit (MPU), including memory region
allocation and access permissions. The detailed definitions are specified
in mpu_config_M55M1.

. Objective:

Ensure that the hardware environment is properly initialized, providing a
stable foundation for subsequent program execution.

6.4.2 Data Preparation

Loading and Processing Data:

(1) Load image data and perform necessary preprocessing, such as resizing
or format conversion.

(2) Ensure that input data meets the requirements of model inference,
thereby improving accuracy and efficiency.

-195 -



. Task Scheduling:

Handled by InferenceTask.cpp. This module manages data reception and
preliminary scheduling to provide valid inputs for the inference module.

6.4.3 Model Inference

Main File Location:
InferenceTask.cpp

Execution Details:

(1) Perform inference using the model core function (m_model-
>RunInference()) and retrieve the output tensor via
GetOutputTensor().

(2) During inference, compute class probabilities and predicted bounding
boxes, converting raw predictions into interpretable results.

. Objective:

Achieve efficient inference execution while ensuring that the results
accurately reflect the input data.

6.4.4 Result Output and Post-Processing

Main File Location:
DetectorPostProcessing.cpp

Execution Details:

(1) Apply Non-Maximum Suppression (NMS) to filter out redundant
prediction boxes, thereby improving detection accuracy.

(2) Map model outputs back to the coordinates of the original image for
further processing and visualization.

. Objective:

Refine output results to precisely locate and classify targets, ultimately
yielding accurate detection outputs.

-196 -



6.4.5 Main Loop

1. Functionality:

Contains control logic for continuous system execution until an exit condition
is triggered (e.g., receiving a termination signal).

2. Key Checks:

Ensure proper resource deallocation during exit to prevent resource leaks
and maintain overall system stability.

6.5 System Program Analysis
6.5.1 Main Files

This section effectively details the boot-up sequence of the M55M1 system,
covering clock — UART — HyperRAM — NPU — security. Each step is
modularized in BoardInit.cpp and parameterized in mpu_config M55M1.h.

Model Initial or Execute Fail

OB EFEDo©

- t I

Post Processing Parameter error, adjust parameters

Data damage or invalid

Figure: System flow chart.

1. System and Module Clock Initialization (SYS_Init)
(1) Functionality:

Ensure both system clock and external oscillators operate stably,
providing clock sources to all modules.

(2) Steps:
a. Enable internal and external oscillators, wait for stabilization.

-197 -



b. Configure APLL (Phase-Locked Loop) as the system clock source at

180 MHz
c. Enable clocks for all required hardware modules.

(3) Example Code:

/* Enable internal RC and external Crystal Osc */
CLK_EnableXtalRC(CLK_SRCTL_HIRCEN_Msk);

CLK_WaitClockReady(CLK_STATUS_HIRCSTB_Msk);
CLK_EnableXtalRC(CLK_SRCTL_HXTEN_Msk);
CLK_WaitClockReady(CLK_STATUS_HXTSTB_Msk);

/* Set and update system clock */
CLK_SetBusClock(CLK_SCLKSRC_APLL, FREQ_180MHZ);

SystemCoreClockUpdate();

Figure: System Initialization Code

2. UART Initialization
(1) Functionality:

Configure UART6 as the standard output port to support debugging via
printf.

(2) Steps:
a. Setthe clock source and multi-function pins for UART.
b. Initialize UART to enable standard output functions.
(3) Example Code:

* Configure UART Clock */
SetDebuglartCLE();

SetDebuglartMFP();
InitDebugUart(); # Initialze UART and Standard Qut

Figure: UART Code Example

3. HyperRAM Initialization and Mode Configuration
(1) Functionality:

Configure the HyperRAM communication interface and switch to Direct
Map Mode for higher access efficiency.

(2) Steps:

-198 -



a. Configure HyperRAM pin assignments and perform basic initialization.
b. Switch to Direct Map Mode to optimize memory access.
(3) Example Code:

HyperRAM_PinConfig(HYPERRAM_SPIM_PORT);
HyperRAM_Init(HYPERRAM_SPIM_PORT);
SPIM_HYPER_EnterDirectMapMode(HYPERRAM_SPIM_PORT);

Figure: HyperRAM Code Example

4. Arm® Ethos™-U NPU Initialization
(1) Functionality:

Initialize the Arm® Ethos™-U NPU and validate status to ensure embedded
Al models can execute properly.

(2) Steps:
a. Enable the NPU.
b. Verify initialization status; return error codes for debugging if
initialization fails.
(3) Example Code:

#if defined(ARM _NPU)

int state;

I* Init Arm Ethos-U NPU, result error code if failed */

if (8 != (state = arm_ethosu _npu_ init())) {
return state;

-I.

J

#endif

Figure: NPU Initialization Code Example

5. Hardware Protection Configuration
(1) Functionality:

Unlock protected registers, configure hardware protection, and lock
registers again to ensure system security.

(2) Steps:

-199 -



a. Unlock protected registers.
b. Apply hardware protection configurations.

Lock registers and print a message confirming system initialization

completion.

(3) Example Code:

S¥S UnlockReg();

SYS_LockReg();

Il Lock protected registers

il Unlock protected registers

info{"%s: complete\n™, __ FUNCTION__}; // Outputthe completion

Figure: Hardware Protection Code Example

6.5.2 Model Inference Program Analysis

This section explains the end-to-end inference workflow, from input handling —

inference — post-processing — multi-task coordination under FreeRTOS. It

emphasizes both the computational flow (Runinference) and the concurrency

management (task queues, semaphores, mutexes).

Current Stage

@

»

.

@

Figure: Model Inference Program Flowchart

1. Key Functional Overview (InferenceTask.cpp)

(1) Inference Execution
a. Model Inference Call:

Executes modelinference on input data using the core function

m_model->RunInference(). Generates inference results for

subsequent processing.

b. Post-Processing:

Utilizes DetectorPostProcessing to parse the output tensor data into

object detection results. Extracts bounding boxes and associated

labels for identified objects.

(2) Task Handling

-200 -



a. Provides a multi-task execution framework under FreeRTOS,

responsible for handling data from the inference task queue.

b. Synchronization is achieved through semaphores and mutexes,

ensuring safe and efficient execution across tasks.

2. Inference and Execution (Runlnference)

(1) Function Description
a. Performsinference using the YOLO model, invoking the core method
m_model->RunInference().
b. Executes post-processing via pPostProc->RunPostProcessing(), which

transforms tensor outputs into interpretable object detection results,

including bounding boxes and classification labels.

(2) Example Code

bool InferenceProcess::Runlob(

object_detection::DetectorPostprocessing *pPostProc,

int
int
int
int

LA

modelCols,
modelRows,
srcImghidth,
srcImgHeight,

:vector<object detection::DetectionResult> *results)

bool runInf = m_model->RunInference();

pPostProc->RunPostProcessing(

{ S

modelRows,
modelCols,
srcImgHeight,
srcImglidth,
modelOutpute,

“results);

Figure: Inference and Execution Code Example

(8) Objective

To structure inference outputs into a usable format, enabling subsequent

visualization and application.

3. FreeRTOS Multi-Task Architecture

-201 -



(1) Functional Purpose
a. Receives inference requests from the task queue (xQueueReceive)
and processes them sequentially.
b. Afterinference and post-processing, results are returned to the
requesting task (xQueueSend).

(2) Example Code

void inferenceProcessTask(void *pvParameters

struct ProcessTaskParams params = *reinterpret_cast<struct ProcessTaskParams *>(pvParameters);

InferenceProcess: :InferenceProcess inferenceProcess(params.model);

xInferencelob *xJob;
xQueueReceive(params.queueHandle, &xJob, portMAX_DELAY);

inferenceProcess.RunJob(
xJob->pPostProc,
xJob->modelCols,
xJob->modelRows,
xJob->srcImgWidth,
xJob->srcImgHeight,
xJob->results

xQueueSend(xJob->responseQueue, &xJob, portMAX_DELAY);

Figure: Multi-Task Architecture Code Example

(8) Architectural Advantages
a. Enhances execution efficiency by using a task queue to maintain
orderly data processing.
b. Ensures resource safety during multi-task execution, preventing
conflicts between concurrent tasks.

6.5.3 Post-Processing Program Analysis
(DetectorProcessing.cpp)

This section explains how YOLO inference outputs are refined into final usable
detection results, ensuring accuracy by filtering low-confidence boxes, applying
NMS, and rescaling detections to the original image resolution.

-202 -



-

1.

— Current Stage =

Figure: Post-Processing flowchart

Key Functional Overview

(1)

Initialization of Post-Processing Parameters

Defines critical parameters for detection, such as detection threshold,
Non-Maximum Suppression (NMS) Intersection-over-Union (loU)
threshold, number of classes, and Top-N selection.

Model Output Handling

Parses bounding box positions and sizes from the YOLO model output
tensor. Filters detections that meet or exceed the confidence threshold.

Non-Maximum Suppression (NMS)

Eliminates bounding boxes with high overlap (loU above the threshold).
Retains only the most relevant detection results.

Rescaling to Original Image Size

Converts model output bounding box coordinates (relative to resized
input) back to the original image dimensions. Produces accurate physical
object locations.

Post-Processing Initialization

(1)

(2)

Parameter Definitions and Significance

a. threshold: Detection threshold; boxes below this confidence level are
discarded.

b. nms:loU threshold for NMS, controlling overlap tolerance between
boxes.

c. numClasses: Number of supported object categories.

d. topN: Maximum number of highest-confidence detections returned.

Example Code

-203 -

D



DetectorPostprocessing: :DetectorPostprocessing(
const float threshold,
const float nms,
int numClasses,
int topN)
: m_threshold(threshold),
m_nms (nms )},
m_numClasses(numClasses),

m_topN({topN) {}

Figure: Post-Processing Initialization Example

(3) Purpose

To establish baseline configurations for the YOLO model’s post-
processing phase.

3. Execution of Post-Processing

(1) Function Description
a. Initializes structured data representation of YOLO network outputs.
b. Extractstensors (e.g., bounding box coordinates and class scores)
from modelOutputO.
c. Converts quantized model outputs to floating-point values using scale
and zeroPoint parameters.

(2) Example Code

t imgNetRows,
imghetCols,
imgSrcRows,

uint32 t imgSrcCols,

TfLiteTensor *modelOutput®,

-204 -



Network net

.inputWidth = sta in gNetCols),
5 mghetRows ),

>datale],
_point->data[@],

.topN = m_topN

Figure: Post-Processing Execution Example

4. Bounding Box Parsing and Filtering

(1) Processing Logic
a. Parses each detection’s bounding box coordinates, dimensions, and
confidence score.
Filters boxes with confidence above the defined threshold.
Converts bounding box positions from model input scale back to
original image scale.

(2) Example Code

GetNetworkBoxes(
net,
originalImagelidth,
originalImageHeight,
m_threshold,

detections);

Figure: Bounding Box Parsing Example

5. Non-Maximum Suppression (NMS)
(1) Objective
a. Removes redundant bounding boxes with loU greater than the NMS
threshold, keeping only the box with the highest confidence.
b. Ensuresthat each detected object is represented by only one
bounding box.

-205 -



6. Rescaling to Original Image Size

(1) Conversion Logic

Rescales bounding box coordinates from model input resolution (e.g.,
320%320 or 416x416) to match the original image resolution. Ensures
detections correspond to true object positions in the input image.

(2) Exa

mple Code

for (auto &it : detections)

{

it.bbox.x = (it.bbox.x * originalImageWidth) / net.inputWidth;
it.bbox.y = (it.bbox.y * originalImageHeight) / net.inputHeight;
it.bbox.w = (it.bbox.w * originalImageWidth) / net.inputWidth;
it.bbox.h = (it.bbox.h * originalImageHeight) / net.inputHeight;

Figure: Rescaling to Original Image Size Example

7. Final Result Generation

(1) Output Contents

a.

Bounding box coordinates: starting point (m_x0, m_y0) and
dimensions (m_w, m_h).

Detection confidence score (m_normalisedVal).

Object classification label (m_cls).

(2) Example Code

DetectionResult tmpResult = {};
tmpResult.m_normalisedvVal = it.prob[j];
(int)boxX;

{(int)boxY;
(int)boxWidth;

tmpResult.m_x@

tmpResult.m_vy@

tmpResult.m_w

tmpResult.m_h

(int)boxHeight;
tmpResult.m_cls = j;

resultsOut.push_back(tmpResult);

Figure: Final Result Generation Example

- 206 -



6.5.4 Main Loop Analysis and Implementation

The main loop serves as the core control module of the system, responsible for
orchestrating data flow, scheduling inference tasks, and handling output results.
Below is a detailed breakdown of its design and functionality.

Model Initial or Execute Fail ——— Current Stage

v I

O- - ST

A 1__'

Post Processing Parameter error, adjust parameters

Data damage or invalid

Figure: Main Loop Flowchart

Main Loop Structure and Flow

1. Data Reception (Back to Dataset Preparation Stage)
(1) Purpose: Check for new data to process and retrieve a complete frame
image from the buffer.
(2) Steps:
a. Obtain an empty buffer (get_empty_framebuf()).
b. Obtain afilled buffer (get_full_framebuf()).

2. Inference Execution (Back to Model Inference Stage)
(1) Purpose: Once the buffer data is ready, send it to the inference task for
execution.
(2) Implementation: Uses TensorFlow Lite model inference via
Runinference().
(3) Main loop role: Waits until inference completes and then proceeds with
post-processing.

3. Post-Processing (Back to Post-Processing Stage)
(1) Purpose:
a. Apply Non-Maximum Suppression (NMS) to remove redundant
bounding boxes.
b. Rescale coordinates from model input space back to original image
dimensions.

-207 -



c. Refine valid detections for efficient display.
4. Display and Output (Back to Result Handling Stage)
(1) Purpose:
a. Render processed detection results to the output device (e.g., LCD
display or serial console).
b. Update buffer status to eFRAMEBUF_EMPTY to mark processing
completion.
5. Error Handling and Summary
(1) Error Scenarios:
a. Ifdatais corrupted or invalid — retry acquisition of valid data.
b. If modelinitialization or execution fails — reinitialize model and restart
inference task.
c. If post-processing parameters are incorrect — adjust input
parameters or model output configuration.

6.5.5 Key Program Analysis (Main.cpp)

1. Image Buffer Management
(1) Purpose: Manages buffers of different states for image filling, inference,
and result processing.
(2) Functions:
a. get_empty_framebuf() — Fetch an empty buffer.
b. get_full_framebuf() — Fetch afilled buffer.
c. get_ inf_framebuf() — Fetch a buffer currently under inference.

static S _FRAMEBUF *get empty framebuf();
static S FRAMEBUF *get full framebuf();
static S_FRAMEBUF *get_inf_framebuf();

Figure: Image Buffer Management Example

2. Model Initialization
(1) Steps:
a. Initialize YOLO model and allocate tensor buffers.
b. Load modellabels and length information.

arm: :app: :YoloXnanoNu model;

model.Init({arm::app::tensorArena, sizeof(arm::app::tensordrena),

arm: :app: :yoloxnanonu: :GetModelPointer (), arm::app::yoloxnanonu::GetModellen());

-208 -



Figure: Model Initialization Example.

3. InputImage Processing
(1) Purpose: Resize input images to the model’s required dimensions and

apply format conversion (e.g., int8).
(2) Example Code:

imlib_nvt_scale(&fullFramebuf->frameImage, &resizeImg, &roi);

if (model.IsDataSigned()) {

arm::app::image::ConvertImgToInt8(inputTensor->data.data, inputTensor-»bytes);

(]

Figure: Image Preprocessing Example

4. Inference Trigger
(1) Purpose: Use FreeRTOS queues to send inference tasks, enabling object

detection on the currentimage.

5. Post-Processing and Result Presentation
(2) Purpose:
a. Draw detection bounding boxes and labels
(DrawlmageDetectionBoxes()).
b. Presentinference results (PresentinferenceResult()).

nvt_scale(&fullFramebuf->frameImage, &resizeImg, &roi);

TeNataSienadl 3} I

arm::app::image::ConvertImgToInt8(inputTensor->data.data, inputTensor-:bytes);

(]

Figure: Result Display Example

6. Main Loop Logic
(1) Execution Logic:
a. Continuously check buffer status and perform corresponding

processing.
b. Insertdelay (vTaskDelay(1)) between iterations to avoid excessive CPU

usage.

-209 -



hile (1) {
infFramebuf = get inf framebuf();
fullframebuf = get_full framebuf();

emptyFramebuf = get ty_framebuf();

Figure: Main Loop Logic Example

6.6 Future Outlook

In future development, HyperRAM can be leveraged to enable the training of
larger models. This expansion would support recognition across a greater
number of classes, thereby improving accuracy. Ultimately, such advancements
can facilitate deployment on a waste conveyor belt system, where the model, in
combination with automated machinery, would enable fast and precise fully
automated waste sorting.

References:
English

e CUDA Toolkit
https://developer.nvidia.com/cuda-toolkit

e Netron
https://netron.app/

Traditional Chinese

e Labellmg Tutorial
https://hackmd.io/@osense-rd-public/H1ekDPgBt

e Anaconda Environment Setup
https://hackmd.io/@nB1rzit6Tog8WdkZosRK_Q/r16-c7Ynj

-210-


https://developer.nvidia.com/cuda-toolkit
https://netron.app/
https://hackmd.io/@osense-rd-public/H1ekDPqBt
https://hackmd.io/@nB1rzit6Toq8WdkZosRK_Q/r16-c7Ynj

7 Smart Home Application 2 — Personnel Tracking

7.1 Case Introduction — Personnel Tracking

The core objective of this case is to implement a smart home personnel
detection system based on the Nuvoton M55M1 hardware platform combined
with a machine learning model.

Key characteristics:

e High-precision target detection: Accurately identifies personnelin
residential environments.

e Real-time inference: Suitable for edge computing scenarios.

e Low-power design: Optimized for long-term continuous operation.

Application scenarios include home security monitoring, elderly care, and
resource management.

The accompanying illustration demonstrates personnel detection running on the
M55M1 platform, showing its ability to process and display detection results in
real time. The system design is aligned with embedded applications, offering
excellent computational performance and hardware compatibility.

System Requirements

The main requirement of the personnel detection system is safety enhancement,
especially in potentially hazardous environments such as factories and
construction sites. The system must be able to accurately monitor entries and
exits within designated areas to ensure compliance with safety regulations.

Core requirements:

e Safety: Monitor restricted or hazardous areas and prevent unauthorized
personnel access.

e Real-time operation: Provide immediate detection and alarm
functionality.

e Ease of use: Must be simple to install and operate, adaptable to diverse
environments.

=211 -



Example Use Cases

1. Industrial production line
e Restrict entry of unauthorized personnel.
e [nstall detection equipmentin operational zones to monitor access.
e Triggerimmediate alarms upon abnormal entry.
2. Construction site
e Monitor access to high-risk areas to prevent accidents.
e Record activity data for subsequent analysis and safety compliance
review

Case Results

This case is based on TinyML techniques for model training and deployment.
Testing was performed both on the PC side and on the development board.

Results:

PC-side verification: Achieved 97% accuracy (143/148) on the validation dataset,
demonstrating high reliability under ideal conditions.

Development board deployment: Achieved 92.5% accuracy (136/148),
confirming robust performance in real-world embedded environments.

Technical Workflow

To achieve efficient model operation on the development board, the following
workflow was adopted:

(1) TinyML Training

Develop and train a lightweight model tailored for edge computing
requirements.

(2) Model Quantization and Optimization

Apply compression and optimizations to adapt the model for low-compute
embedded devices.

(3) Model Vela Compilation and Configuration

-212-



Use Arm® Vela to compile the model, ensuring optimized support for the
M55M1 platform.

(4) C Language Inference Implementation
Develop inference code integrating the model with the hardware interfaces.

Deployment to Development Board: Flash the final model and code into the
board. Conduct on-site testing and debugging to validate performance.

7.2 Model Comparison

1. Model Size and Inference Speed

In this project, the model selection prioritizes both performance and
resource efficiency, especially for low-compute embedded platforms.

(1) YOLOX Nano (used in this project)
a. Extremely small model size: ~0.91M parameters, making it suitable for
resource-constrained devices.
b. High efficiency and low power: Optimized for low-compute platforms,
enabling real-time applications such as smart cameras or drones.
c. Fastinference: Runs efficiently on platforms with built-in NPUs (e.g.,
Nuvoton M55M1), delivering quick detection results.

2. Training Efficiency
Training efficiency is an important factor in evaluating practical usability.

(1) YOLOX Nano (used in this project)
a. Anchor-free design: Simplifies training by removing anchor
dependency, reducing the need for complex hyperparameter tuning.
b. Strong dataset adaptability: Adapts easily to new datasets, especially
for dynamic or rapidly changing data.

(2) Other YOLO models
a. YOLOv4/YOLOv5:

Anchor-based models, requiring careful anchor configuration and
dataset-specific tuning. More hyperparameters to adjust, leading to
higher training complexity.

b. YOLOX Standard versions:

-213-



Also anchor-free like YOLOX Nano. However, larger in size and require
higher computational resources for training, making them more
suitable for high-performance systems.

3. Application Scenarios

Different YOLO variants are tailored for different levels of compute resources
and application needs.

(1) YOLOX Nano (used in this project)
Best suited for low-compute or latency-sensitive environments:

a. Smart Home: Personnel detection, smart door locks, rapid response
to environmental changes.

b. Mobile Devices: Embedded object detection in smartphone apps with
real-time requirements.

c. Industrial Edge Computing: Compact devices like IP cameras on
production lines requiring fast object recognition.

(2) Other YOLO models

YOLOX Standard versions: Ideal for professional-grade use cases
requiring higher precision and throughput.

a. Autonomous driving: High-reliability perception systems.
b. Commercial surveillance: Large-scale monitoring with strict accuracy
demands.

7.3 Labellimg

Labellmgis an open-source image annotation tool widely used for preparing
datasets in object detection tasks. It supports exporting annotations in both
COCO JSON and PASCAL VOC XML formats, making it compatible with
mainstream deep learning frameworks.

7.3.1 Installation

Before installation, ensure that a Python environment is properly configured.
Execute the following command in the terminal to install the Labellmg package:

-214 -



pip install labellImg

This command automatically retrieves and installs the Labellmg package
without the need for additional manual configuration.

7.3.2 Execution

Once installed, Labellmg can be launched directly through the terminal by
running:

labellImg

Upon startup, the interface allows users to load images and annotate objects via
bounding boxes. The tool then generates the corresponding annotation files.
Supported Output Formats:

e PASCALVOC (XML format)
e (COCO (JSON format)

This ensures smooth integration into popular Al workflows, including TensorFlow,
PyTorch, and other object detection pipelines.

7.3.3 Reference Resources

For extended guidance and detailed operation examples, the following resource
may be consulted:

e (English) Installing and using Labelimg to annotate images | by Samin
Karki | Medium
https://medium.com/@samn.krki/installing-and-using-labelimg-to-
annotate-images-92f754e910a5

e (Simplified Chinese) Labellmg Usage Tutorial (CSDN Blog)
https://blog.csdn.net/knighthood2001/article/details/125883343

-215-


https://medium.com/@samn.krki/installing-and-using-labelimg-to-annotate-images-92f754e910a5
https://medium.com/@samn.krki/installing-and-using-labelimg-to-annotate-images-92f754e910a5
https://blog.csdn.net/knighthood2001/article/details/125883343

The tutorial provides comprehensive instructions, including installation,
execution, annotation examples, and export format configuration, making it
suitable for both beginners and experienced practitioners in Al dataset
preparation.

7.4 Model Training on PC with Anaconda Environment

7.4.1 Training Hardware Specifications

1. GPU: Nvidia GTX 1080 Ti
To verify GPU specifications:

e Method 1: Execute the nvidia-smi command in the terminal to display
GPU model and details.

e Method 2: Open Task Manager, switch to the Performance tab, and check
GPU information.

2. GPU determines the compatible CUDA and Torch versions.

To verify supported CUDA versions for your GPU, refer to: PyTorch CUDA
Compatibility Table.

7.4.2 Software and Version Requirements

e CUDA:11.8
e Torch:2.0.0
e Python:3.10

7.4.3 Training Configuration and Results

e Training Duration: Approximately 1.5 hours.
e Training Dataset: ~600 labeled images used.

-216-



7.4.4

Step 1:

Step 2:

Step 3:

Step 4:

7.4.5

Step 1:

Step 2:

Step 3:

Environment Setup

Install Anaconda3

Download and install from the Anaconda official site. Ensure the
conda command is available after installation.

Create Virtual Environment

conda create --name yolox_nu python=3.10
conda activate yolox_nu

Clone YOLOX Nano Repository
gh repo clone MaxCYCHEN/yolox-ti-lite_tflite_int8
Upgrade Pip and Tools

python -m pip install --upgrade pip setuptools

Environment Installation

Install Core Frameworks
PyTorch, CUDA, and MMCV versions must match.

For GPU training (CUDA 11.8 + Torch 2.0.0), install MMCV as
follows:

python -m pip install mmcv==2.0.1 -f
https://download.openmmlab.com/mmcv/dist/cull8/torch
2.0/index.html

Install Additional Dependencies
python -m pip install --no-input -r requirements.txt
Install YOLOX

python setup.py develop

-217 -



1.

7.4.6 YOLOX Nano Model Training

Model Constraints

(1) Without external HyperRAM, only models <2MB are supported.

(2) Selected model: YOLOX_Nano_ti_lite_nu (0.91MB), optimal for the
M55M1 development board.

Training Command

python tools/train.py -f
exps/default/yolox_nano_ti_lite nu.py -d 1 -b 64 --fpl6 -0 -
C

pretrain/tflite_yolox_nano_ti/320 _DW/yolox_nano_320 DW_ti 1i
te.pth

Customizable Parameters

python tools/train.py -f <MODEL_CONFIG_FILE> -d 1 -b
<BATCH SIZE> --fpl6 -o -c <PRETRAIN_MODEL_PATH>

Explanation of Training Parameters
e MODEL_CONFIG_FILE
Refers to the model configuration file.

This must be specified to point to the downloaded YOLOX Nano yolox-
nano-ti-nu configuration file.

e BATCH_SIZE

Defines the training batch size.

Default: 64

If system resources are insufficient, this value can be reduced to 32 or 16.
e PRETRAIN_MODEL_PATH

Indicates the location of the pre-trained model weight file.

This file can be downloaded from the YOLOX Nano pre-trained model
directory.

-218 -



1.

7.4.7 Training Dataset Format

1. Dataset Structure

(1) The dataset is organized according to the following structure and primarily
includes these directories and files:

Annotations (annotation files): Contains training and validation
annotation files in COCO JSON format.

Train2017 (training images): Stores the training images.
Val2017 (validation images): Stores the validation images.

Example of dataset directory structure

datasets/<dataset _name>/
L— annotations/
|— train_annotation_json_file
L— val annotation_json file
L— train2e17/
L— train img
L— val2e17/
L— validation img

(2) Set the dataset paths

Configure dataset paths in the program as follows:

self.data_dir = "datasets/hagrid_coco"
self.train_ann = "hagrid_train.json"
self.val_ann = "hagrid_val.json"

7.4.8 Custom Training Parameters (in train.py)

Primary adjustable parameters

(1) Image size (Resolution):

self.input_sizeand self.test_size define the input resolution for
training and testing. The example setting is 320 x 320.

(2) Number of classes (Classes):

self.num_classes defines the total number of label categories to
recognize. The example setting is 11 classes.

(3) Number of epochs (Epochs):

-219-



self.max_epoch specifies the number of complete passes through the
training dataset. The example setting is 150.

Note:

The number of epochs is not “the more, the better.” Arecommended
default range is 150-200. Excessive epochs may lead to overfitting, which
can reduce model accuracy.

2. Parameter code example

self.input_size = (320, 320)
self.test size (320, 320)
self.num _classes =1
self.max_epoch = 150

Corresponding code settings — example explanation

Number of classes: Setto 11 classes, meaning the model needs to
recognize 11 object categories.

Epochs: Training runs for 150 full epochs, which is suitable for avoiding
overfitting.

7.4.9 PyTorch to ONNX

Model conversion workflow

1.

Convert a PyTorch model to ONNX format
Use the following command:

python tools/export_onnx.py -f <MODEL_CONFIG_FILE> -c
<TRAINED_ PYTORCH_MODEL> --output-name <ONNX_MODEL_PATH>

MODEL_CONFIG_FILE: Describes the model architecture and parameters.
This is typically located in the YOLOX Nano folder.

TRAINED_PYTORCH_MODEL: The trained PyTorch weights file (with .pth
extension) used as the source for conversion.

ONNX_MODEL_PATH: The output path and filename for the converted ONNX
model.

-220-



Example command

python tools/export _onnx.py -f
exps/default/yolox _nano_ti lite nu.py -c

YOLOX outputs/yolox nano_ti lite nu/latest ckpt.pth --
output-name

YOLOX outputs/yolox nano_ti lite nu/vox_nano_nu_medicine.onn
X

Example explanation

exps/default/yolox_nano_ti_lite_nu.py: Path to the model
configuration file.

YOLOX_outputs/yolox_nano_ti_lite_nu/latest_ckpt.pth: The most
recent trained PyTorch checkpoint.

YOLOX_outputs/yolox_nano_ti_lite_nu/vox_nano_nu_medicine.onn
X: Output path and filename for the converted ONNX model.

7.4.10 ONNX to TFLite

Model conversion workflow

Convert the ONNX model into a format compatible with TensorFlow Lite.
Execute the following command to perform the conversion.

. Command template

onnx2tf -i <ONNX_MODEL_PATH> -oiqt -qcind images
<CALI_DATA_NPY FILE> "[[[©,0,0]]]"

ONNX_MODEL_PATH: Path to the ONNX modelfile.
CALI_DATA_NPY_FILE: Path to the calibration data file, usually a
NumPy .npy file.

. Concrete example command

onnx2tf -i

YOLOX outputs/yolox_nano_ti_lite_nu/vox_nano_nu_medicine.onn
X -oiqt -qcind images

YOLOX_outputs/yolox_nano_ti_lite nu/calib_data_320x320 _n200.
npy “[[[@,0,0]]]"

ONNX_MODEL_PATH: Replace with your actual ONNX file path, for example:

-221 -



YOLOX_outputs/yolox_nano_ti_lite_nu/vox_nano_nu_medicine.onn
X.

CALI_DATA_NPY_FILE: Path to the calibration NumPy file, for example:

YOLOX outputs/yolox nano_ti lite nu/calib_data 320x320 n200.
npy.

Calibration parameters:

[0,0,0] serves as the calibration value and can be adjusted based on specific
requirements.

7.4.11 Vela Compiler and Conversion to Deployment
Format

Use the Vela Compiler for model conversion.

1.

Set model paths and output paths
Configure the environment variables as follows:

set MODEL_SRC_FILE=<your tflite model>
set MODEL_OPTIMISE_FILE=<output vela model>

<your tflite model>: Points to the original TFLite model file (.tflite).
<output vela model>: Specifies the optimized model file produced by the
Vela compiler.

Output file
After compilation, the output file will be located at:

vela\generated\yolox_nano_ti_lite nu_full integer_quant_vela
.tflite

This file will be used for subsequent deployment, enabling execution on the
embedded platform.

-222 -



7.5 Inference Program System Flow on the Development
Board

This section describes the complete system workflow of the inference program
on the development board, covering each step from system initialization to result

display.

( N\
System
Initialization
. /
}

( )
Capture
Images
\. J
}

( )
Inference
\_ /
|
4 ™
Post
Processing
\ J
}

e ™)
Display Result
. J/

Yes
No

Figure: System Flow Diagram

1. System Workflow

(1) System Initialization

-223 -



Initialize both hardware and software environments, load the model and
configuration files, and prepare the inference runtime environment.

(2) Capture Image

Acquire real-time image input from the camera module or other image
input devices to be used as input data for the model.

(3) Inference

Run the deployed model on the captured image to perform inference,
generating preliminary detection results.

(4) Post-Processing & Draw Results

Apply post-processing to the raw model outputs, such as decoding
bounding boxes and class labels, and overlay the detection results onto
the image.

(5) Display Results

Render the processed image with detection results on the display device
for user observation.

At the end of the workflow, the system will either continue with the next
inference cycle or terminate the process based on user requirements.

Flowchart Explanation

This section provides a detailed explanation of each step in the inference
program flowchart and its corresponding operational logic.

(1) Peripheral Initialization on the Development Board

Validate whether peripheral devices (e.g., sensors, camera modules) are
successfully initialized. If initialization succeeds, the system enters image
detection mode. If initialization fails, the workflow returns to hardware or
software configuration checks.

(2) StartImage Capture

Activate the image capture function through the camera module to
prepare real-time input data. The captured image is immediately passed
to the deployed deep learning model for processing.

(3) Perform Inference

-224 -



The system executes inference using the deployed model on the captured
image. The model identifies and localizes target objects (e.g., persons).
Outputs include preliminary detection results such as object positions
and class labels.

(4) Enter Post-processing

Apply post-processing operations to the inference results. Detected
targets are annotated with bounding boxes and classification labels.

For example, if a person is detected, the individual is highlighted with a
bounding box to indicate position and size.

(5) Output Results

Render the processed image with detection annotations on the display
screen. Provide users with a visual representation of the inference results.

(6) Flow Control
Based on user requirements:

If continuous detection is requested, the workflow loops back to the
image capture step.

If termination is requested, the program execution ends.

3. System Initialization

System initialization is the first step in running the inference system. Its
primary responsibility is to configure hardware resources to ensure that other
modules operate reliably. The following describes the initialization workflow
and the specific functionality and implementation of the BoardInit()
function.

(1) BoardInit() Function

The BoardInit () function is a critical routine responsible for executing
hardware-related initialization tasks, ensuring that fundamental hardware
resources are fully prepared.

Objectives of execution:

e Provide a stable system clock (CLK) and reliable communication
mechanisms to support the operation of other modules, such as
image processing and neural network inference.

-225 -



e Enable basic input/output (I/0) functionality to ensure proper
interaction with peripherals.

(2) Core Code Explanation

Below is an excerpt of the BoardInit () function code with explanatory
notes:

SYS_Init(

CLK_EnablextalRC(CLK_SRCCTL_HIRCEN Msk);
CLK_WaitClockReady (CLK_STATUS HIRCSTB Msk);
CLK_EnableXtalRC(CLK_SRCCTL_HXTEN_Msk) ;
CLK_WaitClockReady (CLK_STATUS_HXTSTB_Msk);

CLK_SetBusClock(CLK_SCLKSEL_SCLKSEL_APLL@, CLK_APLLCTL_APLLSRC_HIRC, FREQ 18@MHZ);

SystemCoreClockUpdate();

BoardInit(

SYS_UnlockReg

SYS Init();

InitDebugvart
SYS LockRe

HyperRAM Init(HYPERRAM SPIM PORT);

SPIM HYPER EnterDirectMapMode(HYPERRAM SPIM PORT);

info("%s: ple ', __FUNCTION );

Figure: Example of BoardInit() function implementation

-226 -



These steps collectively guarantee the stability and availability of the system
hardware, providing the necessary foundation for higher-level functions such
as image acquisition, neural network inference, and result visualization.

. Explanation of Image Capture Program Segment

Image capture is one of the key steps in the inference system. It relies on the
frame buffer to temporarily store the acquired image data. This section
introduces the core logic and function implementations used in the image
capture process.

Frame Buffer

The frame buffer is a memory region used to temporarily store captured
image data. During system operation, the state of the frame buffer must be
checked in order to locate an available buffer that can store new image
frames.

(1) get_empty_framebuf Function
The primary purpose of the get_empty_framebuf function is to:

Traverse the frame buffer list to identify a buffer in the empty state
(eFRAMEBUF_EMPTY).

Return a pointer to the available buffer, which will be used to store
the next captured image frame.

Code Example:

S FRAMEBUF *get empty framebuf()

1;

for (i = @; i < NUM FRAMEBUF; i ++)

it (s_asFramebuf[i].eState == eFRAMEBUF EMPTY
return &s_asFramebuf|[i];

return

-227 -



Figure: get_empty_framebuf() function implementation

This function iterates through all frame buffer states and returns the first
available buffer found. If no buffer is available, it returns NULL.

(2) ImageSensor_Capture Function

The ImageSensor_Capture function performs the core operations of the
image capture routine. Its workflow is as follows:

a. Invoke the get_empty_framebuf function to obtain an available frame
buffer.

b. Usetheimage sensor to capture a new frame and store it into the
selected buffer.

c. Handle potential errors during the capture process, such as reporting
a failure when no valid image data is acquired.

Code Example:

void ImageSensor_Capture(uint32_t* framelImag
S_FRAMEBUF* emptyFramebuf = get_empty fram
(emptyFramebuf) {
uint8_t* pu8ImgSrc get_img_array(u8ImgIdx);
pu8ImgSrc NULL
printf("Failed to get image index");

>

memcpy .data, pu8ImgSrc, IMAGE_SIZE);

Figure: ImageSensor_Capture() function implementation

Through this function, the captured image data is reliably stored in the frame
buffer. The stored frames are then made available for the subsequent inference
module, ensuring a smooth pipeline from data acquisition to neural network
inference.

5. Inference

-228 -



Inference is the core component of the entire system. Itis responsible for
analyzing the captured images and generating detection results. This section
provides detailed explanations of the core functions and logic involved in the
inference process.

(1) get_full_framebuf Function

The get_full_framebuf function retrieves an image frame from a filled
frame buffer, which is then used as the input for inference operations.

Logic Overview:

Iterates through all frame buffers.
Returns the first buffer found in the filled state (¢eFRAMEBUF_FULL).
If no buffer is found, returns NULL.

> FRAMEBUF “Fget tull framebutf ()

i < NUM FRAMEBUF; 1 ++)

asFramebuf[i].eState == eFRAMEBUF_ FULL
urn &s_ asFramebut|[i];

Figure: get_full_framebuf() function implementation

(2) Inference Program Logic
The inference procedure consists of the following steps:

a. Obtain afilled frame buffer as the input image data.
b. Configure the inference task, including:
e Inputimage size
e Model dimensions (rows and columns)
e Post-processing parameters
c. Submitthe configured inference task into the inference queue,
where it will wait for execution.

These steps enable the system to efficiently complete inference tasks
and provide base data for subsequent post-processing.

-229 -



(3) PresentlnferenceResult Function

The final stage of inference is to visualize and present the detection
results so that users can understand them.

The PresentinferenceResult function:

e Formats and outputs each detected object.
e Includesthe object’s class label and bounding box coordinates.

Code Example:

PresentInferenceResult(( - j etectio i esult> &results,

results[i]. 3
results[i].m x8, results[i].m y ts[i].m_w, results[i].m_h);

Figure: PresentinferenceResult() function implementation

This function generates a user-friendly representation of inference results. Itis
typically used for debugging or for presenting a concise summary of detection
outputs.

6. Post-Processing— Non-Maximum Suppression (NMS)

Post-processing is a critical part of the object detection pipeline, aimed at
refining inference outputs. The workflow includes:

(1) Scaling Detection Boxes

Rescale the detection boxes from model output space back to the original
image dimensions.

Ensure bounding boxes align with the scale of the inputimage.
(2) Extracting Detection Results
Parse model output tensors to extract:

e Bounding box coordinates
e C(Classification probabilities

-230 -



Sort detected objects by their confidence scores.
(3) Executing Non-Maximum Suppression (NMS)

NMS is the core step in object detection post-processing. Its purpose is to
eliminate redundant detections.

Select the bounding box with the highest classification confidence.

Suppress overlapping boxes whose loU (Intersection over Union) exceeds
a predefined threshold.

Repeat until all boxes are processed.

This step significantly improves detection accuracy and reduces
duplicate detections.

(4) Output Results

Store the refined detection results into a designated data structure (e.g.,
resultsOut vector).

Results can then be visualized or passed to downstream applications.
(5) Basic NMS Logic Summary
Sort all detection boxes by classification score (descending order).

Select the box with the highest score as a final box. Remove boxes with
loU greater than the threshold relative to the selected box.

Repeat until no boxes remain.

-231-



8 Smart Agriculture 1 - Apple Quality Recognition

8.1 Case Introduction — Apple Quality Recognition

Abstract

The core objective of this case study is to implement an intelligent apple quality
recognition system based on the Nuvoton NuMicro® M55M1 hardware platform
combined with a machine learning model. The key characteristics of this
solution include:

e High-precision object detection, enabling accurate recognition of apple
quality.

e Real-time inference support, meeting the requirements of edge
computing applications.

e Low-power design, suitable for long-duration operation.

The platform is optimized for embedded system applications, offering strong
computational performance and broad hardware compatibility.

Requirements
1. Standardization

In apple quality recognition, standardization is a core requirement.
Traditionally, apple grading has relied on manual inspection, which is prone
to subjective bias and inconsistencies. By leveraging machine learning and
computer vision technologies, the system applies unified grading criteria,
eliminating subjective human error. Each apple is graded against the same
standard, ensuring accuracy, consistency, and improved quality control.

2. High Efficiency

Modern large-scale production lines demand high efficiency. The apple
quality recognition system must support high-speed detection and process
large volumes of apple image data within short timeframes. This capability:

e Increases overall production throughput.
e Reduces waiting time and resource waste.

-232-



e Significantly improves production line performance and economic
benefits.

Application Scenario

Apple Sorting and Packaging Production Line:

Sorting and packaging are critical steps in apple processing. Traditional
grading methods are time-consuming, labor-intensive, and prone to human
bias, which reduces product consistency and market value.

By integrating machine learning and computer vision, the quality recognition
system enables automated apple grading.

Workflow:

e Ahigh-resolution camera captures images of each apple.

e Adeep learning model analyzes external features such as color, shape,
defects (e.g., spots, scratches, bruises)

e Based on extracted features, apples are automatically classified into
quality tiers (e.g., high, medium, low).

e Classification results guide the automated packaging and labeling
process.

Advantages:

(1) Increased efficiency —real-time grading without manual intervention
improves sorting speed and accuracy.

(2) Reduced labor costs —automation minimizes the need for manual work,
cutting costs and reducing human error caused by fatigue.

(3) Enhanced standardization — unified classification criteria ensure
consistent product quality, improving consumer satisfaction and market
competitiveness.

Expected Results

-233-



This case leverages TinyML technology for model training and deployment.
Testing was performed both on PC and after deployment to the development
board.

Results:

e After deployment to the development board, the recognition system
achieved an accuracy rate of 92% (272/296).

e This demonstrates the model’s strong real-world performance under
practical application conditions.

8.2 Model Comparison

The model comparison in this case study is introduced in three aspects:

8.2.1 Model Size and Inference Speed

A key factor in model selection for this project is balancing performance and
resource requirements, especially when optimizing for low-compute-power
devices. The detailed comparison is as follows:

1. YOLOX Nano (Used in This Project)

(1) Extremely small model size: Only ~0.91M parameters, making it highly
suitable for deployment on hardware with limited resources.

(2) High efficiency and low power consumption: Optimized for low-compute
platforms, making it suitable for real-time applications such as smart
cameras and drones.

(3) Fastinference speed: Demonstrates excellent performance on low-power
devices (e.g., M55M1), enabling rapid task execution with real-time
results.

2. Other YOLO Models

YOLOX Standard Versions: Support multiple model sizes (e.g., YOLOX-S,
YOLOX-M).

Advantage: Higher accuracy for demanding applications.

Trade-off: Slower inference speed, especially with larger model variants.

-234 -



8.2.2 Training Efficiency

Training efficiency is an important indicator when evaluating a model’s
practicality. The comparison between YOLOX Nano and other YOLO models is
outlined below:

1. YOLOX Nano (Used in This Project)

(1) Anchor-free architecture: Simplifies the training process by reducing
dependence on anchors, thereby lowering hyperparameter tuning
complexity.

(2) Strong dataset adaptability: Easier to adapt to new datasets compared to
other YOLO models, especially for dynamic or changing data sources.

2. Other YOLO Models
(1) YOLOvV4 /YOLOv5:

Use anchor-based methods, requiring stricter dataset labeling and
anchor configuration.

Often need more hyperparameter adjustments to achieve optimal
performance.

(2) YOLOX Standard Versions:
Also anchor-free, similar to YOLOX Nano in training workflow.

However, due to larger model sizes, require greater computational
resources for training. More suitable for high-performance hardware
environments.

8.2.3 Application Scenarios

Different YOLO models are suited for different use cases depending on their
design and performance requirements.

1. YOLOX Nano (Used in This Project)

-235-



Best suited for low-power or real-time applications, including:

(1) Smart home: e.g., smart locks and human presence detection, enabling
quick responses to environmental changes.

(2) Mobile devices: On-device object detection for mobile apps with real-
time processing requirements.

(3) Industrial edge computing: Real-time detection tasks on compact
devices such as small cameras, e.g., for industrial production line
monitoring.

8.3 Labellmg

Labellmgis an open-source image annotation tool designed to create labeled
datasets for object detection tasks. Below are the installation and usage steps:

8.3.1 Installation of Labellmg

Ensure that a Python environment is available. Install Labellmg using pip:

$ pip install labelImg

8.3.2 Running Labellmg

After installation, launch Labellmg with the following command in the terminal:

$ labellImg

Once started, Labellmg allows you to load images, draw bounding boxes, and
assign labels. The tool generates annotation files in formats such as COCO JSON
or PASCAL VOC XML.

8.3.3 Reference Tutorials

For more detailed usage instructions, refer to the following guide:

-236 -



e (English) Installing and using Labelimg to annotate images | by Samin
Karki | Medium
https://medium.com/@samn.krki/installing-and-using-labelimg-to-
annotate-images-92f754e910a5

e (Simplified Chinese) Labellmg Usage Tutorial (CSDN Blog)
https://blog.csdn.net/knighthood2001/article/details/125883343

8.4 Model Training in Anaconda Environment on PC

8.4.1 Training Hardware Specifications

. GPU: Nvidia GTX 1080 Ti

The GPU model and specifications can be verified through the following
methods:

e Method 1: Run the command nvidia-smi in the terminal to display GPU
model and specifications.

e Method 2: Open Task Manager, switch to the Performance tab, and check

the GPU information to confirm the model and utilization status.

. GPU determines the compatible CUDA and Torch versions.

To verify supported CUDA versions for your GPU, refer to: PyTorch CUDA
Compatibility Table.

8.4.2 Software and Version Requirements

e CUDA:11.8
e Torch:2.0.0
e Python:3.10

8.4.3 Training Configuration and Results

-237 -


https://medium.com/@samn.krki/installing-and-using-labelimg-to-annotate-images-92f754e910a5
https://medium.com/@samn.krki/installing-and-using-labelimg-to-annotate-images-92f754e910a5
https://blog.csdn.net/knighthood2001/article/details/125883343

e Training Duration: The model requires approximately 1.5 hours of training

time.

e Training Dataset: Around 600 images were used as training data.

8.4.4

Step 1:

Step 2:

Step 3:

Step 4:

8.4.5

Step 1:

Training Environment Setup

Install Anaconda3

Download and install Anaconda3 from the official website:
Anaconda Download Page. After installation, verify that the conda
command is accessible and functioning correctly.

Create a New Environment

Open Anaconda Prompt (or terminal).

Create a dedicated environment with Python 3.10:

conda create --name yolox_nu python=3.10

Activate the environment:

conda activate yolox_nu

Download YOLOX Nano Resources

Clone the YOLOX Nano GitHub repository:

gh repo clone MaxCYCHEN/yolox-ti-lite tflite_int8
Update Pip and Tooling

Ensure Pip and Setuptools are updated to the latest versions to
avoid dependency conflicts:

python -m pip install --upgrade pip setuptools

Environment Installation

Install Core Frameworks

Install PyTorch, CUDA, and MMCV.

PyTorch, CUDA, and MMCV versions must be compatible.
For CPU-only training, CUDA installation can be skipped.

-238 -



For GPU training, install versions corresponding to your GPU
specifications:

CUDA:11.8
Torch: 2.0.0

Example MMCV installation command:

python -m pip install mmcv==2.0.1 -f
https://download.openmmlab.com/mmcv/dist/cull8/torch
2.0/index.html

Step 2: Install Additional Python Dependencies

Use the provided requirements.txt file to automatically install all
dependencies:

python -m pip install --no-input -r requirements.txt
Step 3: Install YOLOX

From within the YOLOX project directory, execute the following to
complete installation:

python setup.py develop

8.4.6 YOLOX Nano Model Training

1. Model Characteristics — Constraints
Memory Limitation:

Due to the absence of external HyperRAM, only models smaller than 2 MB
can be deployed.

Selected Model:

The project uses YOLOX_Nano_ti_lite_nu, with a size of only 0.91 MB,
making it the most suitable model for the M55M1 development board.

2. Training Procedure

Execute Training Command:

-239-



The following command initiates training based on the specified model
configuration file and pretrained model:

python tools/train.py -f
exps/default/yolox nano_ti lite nu.py -d 1 -b 64 --fpl6 -
0 -C

pretrain/tflite_yolox_nano_ti/320 DW/yolox_nano_320 DW_ti
_lite.pth

Custom Training Parameters:
Training parameters can be modified using the following general format:

python tools/train.py -f <MODEL_CONFIG_FILE> -d 1 -b
<BATCH_SIZE> --fpl6 -o -c <PRETRAIN_MODEL_PATH>

Parameter Definitions
MODEL_CONFIG_FILE

Path to the model configuration file. Must point to the configuration of
yolox_nano_ti_lite nuinthe YOLOX Nano repository.

BATCH_SIZE

Defines the training batch size. Default: 64.
If system resources are limited, reduce to 32 or 16.

PRETRAIN_MODEL_PATH

Path to the pretrained model weights. These weights can be downloaded
from the YOLOX Nano pretrained model directory.

8.4.7 Training Dataset Format

Dataset Structure
The dataset is organized into the following directories and files:

e Annotations (Label Files): Contains training and validation annotation
files in COCO JSON format.

e Train2017 (Training Images): Stores training images.

e Val2017 (Validation Images): Stores validation images.

Example Directory Layout

-240 -



datasets/<dataset_name>
annotations/
train_annotation_json _file
val_annotation_json_file
train2017/
training images
val2e17/
validation images

2. Dataset Path Configuration

In the program, the dataset path should be specified. Example:

self.data_dir = "datasets/hagrid_coco"
self.train_ann = "hagrid_train.json"
self.val_ann = "hagrid_val.json"

8.4.8 Custom Training Parameters (train.py)

1. Primary Adjustable Parameters
(1) Image Resolution (self.input_size & self.test_size):

Defines the resolution for training and testing images. Example setting:
320 x 320.

(2) Number of Classes (self.num_classes):

Specifies the total number of annotated categories to be recognized.
Example: 11 classes.

(3) Epochs (self.max_epoch):

Defines the number of full training iterations over the dataset. Example:
150.

Note:

More epochs are not always better. Recommended range: 150-200.
Excessive epochs may lead to overfitting, reducing model accuracy.

2. Example Parameter Code

self.input_size = (320, 320)
self.test _size (320, 320)
self.num_classes =1
self.max_epoch = 150

- 241 -



Example Explanation:

Number of Classes: Setto 11, meaning the modelis trained to recognize 11
object categories.

Epochs: Training runs for 150 complete epochs, a balanced choice to avoid
overfitting while ensuring adequate training.

8.4.9 PyTorch to ONNX

Model Conversion Workflow
1. Convert PyTorch Model to ONNX Format
Run the following command to perform the conversion:

$ python tools/export_onnx.py -f <MODEL_CONFIG_FILE> -c
<TRAINED PYTORCH_MODEL> --output-name <ONNX MODEL_PATH>

MODEL_CONFIG_FILE: Defines the model architecture and parameters.
Typically located in the YOLOX Nano folder.

TRAINED_PYTORCH_MODEL: Trained PyTorch modelfile (.pth format), used as
the source for conversion.

ONNX_MODEL_PATH: Path and filename for saving the converted ONNX
model.

2. Example Command

$ python tools/export_onnx.py -f
exps/default/yolox_nano_ti_lite nu.py -c

YOLOX outputs/yolox_nano_ti_lite nu/latest_ckpt.pth --
output-name

YOLOX outputs/yolox_nano_ti_lite _nu/vox_nano_nu_medicine.onn
X

3. Example explanation

exps/default/yolox_nano_ti_lite_nu.py: Path to the model
configuration file.

-242 -



YOLOX_outputs/yolox_nano_ti_lite_nu/latest_ckpt.pth: Latest
trained PyTorch checkpoint file.

YOLOX_outputs/yolox_nano_ti_lite_nu/vox_nano_nu_medicine.onnx:
Destination path and filename for the converted ONNX model.

8.4.10 ONNX to TFLite

Model Conversion Workflow

Convertthe ONNX model into TensorFlow Lite (TFLite) format using the
following command:

onnx2tf -i <ONNX_MODEL_PATH> -oiqt -qcind images
<CALI_DATA_NPY FILE> "[[[0,0,0]]]"

ONNX_MODEL_PATH: Path to the ONNX modelfile.
CALI_DATA_NPY_FILE: Calibration datasetin .npy format, used for
quantization.

Example Command

onnx2tf -i
YOLOX_outputs/yolox_nano_ti_lite_nu/vox_nano_nu_medicine.onnx -oigt -
qgcind images
YOLOX_outputs/yolox_nano_ti_lite_nu/calib_data_320x320_n200.npy
"[{{0,0,01]]"

Parameter Details

ONNX_MODEL_PATH: Example file path
YOLOX outputs/yolox_nano_ti_lite _nu/vox_nano_nu_medicine.onn
X

CALI_DATA_NPY_FILE: Example calibration datafile:
YOLOX outputs/yolox _nano_ti_lite nu/calib_data_320x320 _n200.

npy

Calibration Parameters:

[0,0,0] specifies calibration mean values and can be adjusted as needed.

8.4.11 Vela Compiler — Conversion for Deployment

-243 -



Use the Vela Compiler for model conversion.

1.

Define Model Path and Output Path
Use the following commands to configure model paths:

$ set MODEL SRC FILE = <your tflite model>
$ set MODEL OPTIMISE FILE = <output vela model>

<your tflite model>: Path to the original TFLite model file (.tflite).
<output vela model>: Path for saving the optimized model generated by
Vela Compiler.

Output File
After compilation, the optimized output file will be located at:

vela/generated/yolox_nano_ti_lite nu_full integer_quant_vela
.tflite

This optimized .tflite model is used for deployment on embedded platforms,
ensuring efficient inference execution.

8.5 Future Outlook

With the rapid advancement of technologies—particularly in the fields of
Artificial Intelligence (Al), Machine Learning, the Internet of Things (loT), and

Embedded Systems—the future of apple quality recognition technology appears
highly promising. From smart agriculture to automated production, such
systems will not only enhance the market competitiveness of agricultural

products but also significantly improve efficiency and quality control throughout

the agricultural production process. The following outlines several potential

directions for future development:

1.

Higher-Precision Recognition Technology

Future apple quality recognition systems will benefit from more advanced
deep learning models and high-resolution image processing technologies.
With continuous improvements in image sensor technology, next-generation
systems will achieve finer-grained feature extraction for apples, enabling
precise identification of attributes such as color, shape, and surface defects

-244 -



(e.g., spots, scratches). Emerging models such as Convolutional Neural
Networks (CNNs) and their variants—including self-attention mechanisms
and Generative Adversarial Networks (GANs)—will further enhance
recognition accuracy and processing speed.

. Cross-Device and Cloud Integration

With the growth of loT, apple quality recognition will no longer be confined to
a single embedded development board or device. Instead, it will be
integrated across a broader range of smart devices, enabling collaborative
operation. For example, sensors, cameras, and drones could work together
to monitor orchards and perform quality inspection tasks. These devices will
generate large-scale datasets, which can be processed via cloud platforms
for remote monitoring and intelligent decision support, thereby increasing
the level of automation and intelligence in agricultural production
management.

Real-Time Processing and Edge Computing

Driven by the rise of Edge Computing, future apple quality recognition
systems will increasingly emphasize real-time processing capabilities,
particularly in resource-constrained environments such as orchards.
Embedded platforms such as Nuvoton M55M1 will continue to undergo
optimization to support faster data processing. This enables on-device, real-
time recognition without relying on cloud connectivity, which reduces latency
while improving reliability and operational efficiency.

- 245 -



9 Smart Agriculture 2 — Fish Fry Counting

9.1 Case Introduction - Fish Fry Counting

9.1.1 Application Scenario

Using a camera module to capture underwater fish fry images, the Nuvoton
M55M1 development board performs real-time inference. The system displays
the fish fry classification results on the onboard LCD panel, while
simultaneously outputting the current fry count via the terminal interface.

Figure: Fish Fry Counting Result

9.1.2 Project Summary

The dataset was trained using the YOLOX-ti-lite_tflite_int8 model. The model
underwent a complete framework conversion pipeline, starting from PyTorch —
ONNX— TensorFlow Lite, followed by quantization into INT8 format to reduce
model size and enhance inference speed. This optimization improved both
model efficiency and deployment feasibility.

Subsequently, the Vela Compiler was applied to allocate supported operations
onto the NPU (Neural Processing Unit), further accelerating inference. The

- 246 -



optimized model was then compiled using Keil, and the resulting firmware was
deployed to the Nuvoton M55M1 development board.

Upon execution, the system displays fry classification results on the LCD panel,
and the fry count is reported on the PC terminal (PuTTY) in real time.

9.1.3 Data Processing and Inference Workflow

Dataset Preparation

Model Conversion and Optimization

PyTorch — ONNX — TensorFlow Lite

INT8 quantization and Vela compilation for NPU acceleration
Deployment — Model burned into M55M1 board

Counting Function Integration

N ok obd=

Inference Output — Display fry classification on LCD, with real-time count
displayed on PuTTY terminal

G D K Cm{ntmg B
Function

Figure: Data Processing and Model Inference Workflow

9.1.4 Results and Accuracy

Validation results demonstrated a recognition accuracy of 95.7% (180 correctly
identified out of 188 samples in the test set).

9.2 System Workflow and Program Modules

1. Core Source Files
main.cpp

Responsible for system initialization and orchestrating the execution flow.
Invokes other functional modules as the program entry point.

-247 -



BoardInit.cpp/BoardInit.hpp

Handles hardware board initialization, including configuration of GPIO,
12C, SPI, and other peripheral interfaces.

InferenceTask.cpp/ InferenceTask.hpp

Manages model loading and execution of inference tasks. Encapsulates
the logic required to run Al models on the M55M1 development board.

DetectorPostProcessing.cpp/DetectorPostProcessing.hpp

Processes raw model outputs and converts them into usable bounding
box results. Implements data parsing, Non-Maximum Suppression (NMS),
and coordinate transformation. Required because models typically
output numerical coordinates (e.g., X, ¥, w, h) or preformatted bounding
boxes that must be post-processed before visualization.

mpu_config M55M1.h

Defines hardware parameters and processor-specific configuration
settings for the Nuvoton M55M1 development board.

. Supporting Directories

Device / GCC / Keil / IAR:

Provide device drivers and compiler-specific project configuration files.
Ensure portability across multiple toolchains.

Model:

Stores machine learning models and corresponding training results.
Typically includes pre-trained .tflite or .onnx models optimized for
deployment.

ProfilerCounter:

Contains performance analysis utilities. Used to measure execution time,
memory usage, and inference latency, supporting system optimization.

Pattern:

Holds test samples or template datasets used for functional validation.
Facilitates unit testing and benchmarking during development.

- 248 -



9.3 Dataset and Model Training

9.3.1 Dataset Preparation

. Annotation Tool: Use Labellmg for dataset annotation.

. Data Source: Self-captured images of Xiphophorus maculatus (Platyfish).
. Annotation Format: COCO JSON format, with the following dataset
distribution:

e Training Set: 752 images

e Validation Set: 188 images

9.3.2 Model Training

. Framework: PyTorch

. Model Selection: YOLOX-ti-lite_tflite_int8 — featuring high efficiency and
lightweight properties, well-suited for embedded deployment.

. Training Environment: NVIDIA GeForce RTX 4060 GPU; each training session
requires approximately 60 minutes.

. Model Source & Reference Link:

e GitHub: https://github.com/MaxCY CHEN/yolox-ti-lite_tflite_int8

9.3.3 Model Framework Conversion

. Convert from PyTorch — ONNX — TensorFlow Lite, followed by INT8
quantization to optimize model size and inference speed.

. Quantization Objective: Balance accuracy with efficiency, ensuring suitability
for embedded device deployment.

9.3.4 Environment Setup Steps

. Create Python Environment

(1) Using Anaconda:
conda create --name yolox_nu python=3.10

- 249 -


https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8

conda activate yolox_nu
(2) Upgrade pip and setuptools
python -m pip install --upgrade pip setuptools
(3) Install CUDA, PyTorch, and MMCV
Select CUDA version according to GPU configuration.
Actual versions used: CUDA 11.8, PyTorch 2.0, MMCV 2.0.1.
Installation command:

pip install mmcv==2.0.1 -f
https://download.openmmlab.com/mmcv/dist/cull8/torch2.0/1
ndex.html

(4) Install Project Dependencies
python -m pip install --no-input -r requirements.txt
(5) Install YOLOX

python setup.py develop

9.3.5 Dataset Directory Structure

Prepare training data in the following structure under Datasets

Datasets/<your_datasets_name>/

| — annotations/

| |— train_annotation_json_file

| L— val_annotation_json file

|— train2017/ (training images)
|— val2e1l7/ (validation images)

9.3.6 Training Parameter Configuration

In yolox_nano_ti_lite_nu.py:

self.input_size = (320, 320)
self.test size = (320, 320)
self.num_classes =1
self.max_epoch = 150

- 250 -



self.num_classes = 1

self.depth = 0.33

self.width = @.25

self.input_size = (320, 320)

self.random_size = (18, 20)

self.mosaic_scale = (8.5, 1.5)

self.mosaic_prob = 0.5

self.enable mixup =

self.exp_name = os.path.split(os.path.realpath(__ file_ ))[1].split("."
self.act = "relu"

self.data_dir = "datasets/red_coco"
self.train_ann = "train2017_red.json"
self.val_ann = "val2017_red.json"

self.warmup_epochs = 5
self.max_epoch = 150

self.test_size = (320, 320)

Figure: Training Parameter Configuration

9.3.7 Pre-trained Model Training

1. Useexps/default/yolox_nano_ti_lite_nu.py asthe default
configuration file.
2. Update dataset paths:

self.data_dir = "datasets/your_coco"
self.train_ann = "your_train.json"
self.val _ann = "your_val.json"

9.3.8 Start Training

python tools/train.py -f <MODEL_CONFIG_FILE> -d 1 -b
<BATCH_SIZE> --fpl6 -o -c <PRETRAIN_MODEL_PATH>

9.3.9 Model Conversion and Optimization

PyTorch — ONNX

python tools/export_onnx.py -f <MODEL_CONFIG_FILE> -c
<TRAINED_PYTORCH_MODEL> --output-name <ONNX_MODEL_PATH>

-251 -



Calibration Data Generation

python demo/TFLite/generate_calib_data.py --img-size
<IMG_SIZE> --n-img <NUMBER_IMG_FOR_CALI> -o
<CALI_DATA_NPY FILE> --img-dir <PATH_OF_TRAIN_IMAGE_DIR>

ONNX — TFLite (with INT8 Quantization)

onnx2tf -i <ONNX_MODEL_PATH> -oiqt -qcind images
<CALI_DATA NPY_FILE> "[[[[1,1,1]1]111"

9.3.10 Vela Compilation

1. Place the quantized modelinto vela/generated/.
2. Editvariables.bat underthe vela directory:

set MODEL_SRC_FILE=<your tflite model>
set MODEL_OPTIMISE_FILE=<output vela model>

3. Run gen_model_cpp to generate compilation results.
4. Output will appear at:

vela/generated/yolox_nano_ti_lite nu_full integer_quant_vela
.tflite.cc

9.4 C++ Design, Deployment, and Flashing

9.4.1 Program Workflow Overview

1. Software Function Design
Main.cpp: Responsible for invoking board modules, including:

e Camera module
e LCDdisplay module
e Detection bounding-box rendering

2. Flashing Process

-252 -



(1) Keil IDE: Used for embedded development and firmware flashing.

(2) Project Setup: Establish a project environment to support both hardware
and software co-development.

(8) Model File Flashing: Deploy the trained ML model onto the target
hardware using Keil’s flashing utilities.

Execution Workflow
(1) System Startup & Initialization
a. CallBoardInit.cpp toinitialize hardware resources.
b. Initialize other subsystems such as memory allocation and peripheral
activation.
(2) Model Loading & Inference Task
a. Load ML model from the /Model directory.
b. CallInferenceTask.cpp to execute inference:
(a) Passimage input data into the model.
(b) Receive detection outputs (bounding boxes, labels).
(8) Inference Result Post-Processing
a. Call DetectorPostProcessing.cpp to handle model output:
(a) Filtering and formatting (Non-Maximum Suppression, bounding-
box decoding).
(b) Convert results into interpretable bounding boxes.
(4) Output & Response
a. Return results to the main program.
b. Display detection results on the LCD or transmit over a network
interface.

9.4.2 Hardware Resource Configuration and Main Program
Implementation

Main.cpp Responsibilities

(1) Board Initialization: Initialize clocks, GPIO, and other fundamental
peripherals.

(2) Constant Definitions: Use USE_CCAP and USE_DISPLAY to configure
camera sensor and LCD modules.

(3) Al Model Initialization: Instantiate Arm®::app::YoloXnanoNu model and
allocate Tensor Arena buffer.

(4) Inference Task Creation: Use FreeRTOS xTaskCreate to establish
inference tasks for processing image data.

(5) Image Processing Workflow:

-253 -



e Image acquisition, scaling, format conversion

e Modelinference

e Post-processing: detection box drawing and label rendering

2. Main Program Flow

e System Boot— Main Loop — Image Capture — Inference — Post-

processing — Display — Repeat

e When buffer empties, terminate execution.

System
Initialization

Capture
Images

H

Inference

H

Post
Processing

H

Draw Box &
Display Result

Clear Buffer

{

Figure: Main Program Flow

9.4.3 System Initialization — BoardInit()

1. Ensurereliable clock (CLK) sources and communication mechanisms for NN

inference.

2. Initialize HyperRAM, UART, and Core Clock (CLK).

3. Example steps:

e System Clock (SYS_Init): enable external RC oscillator and HXT clock

source.

-254 -



SYS_Init(

CLK_EnablextalRC(CLK_SRCCTL MIRCEN Msk);

CLK WaitClockReady(CLK STATUS HIRCSTB Msk);

CLK_EnablextalRC(CLK_SRCCTL_HXTEN Msk);

CLK_WaitClockReady(CLK_STATUS_HXTSTB_Msk);

CLK_SetBusClock(CLK_SCLKSEL_SCLKSEL_APLL®, CLK_APLLCTL_APLLSRC_HIRC, FREQ 186MHZ);

SystemCoreClockUpdate();

Figure: CLK Initialization

e Update core frequency.

e Peripheral Initialization: camera, display, GPIO.

e UART setup for debugging/logging.

e HyperRAM configuration for large buffer allocation.

BoardInit(

SYS UnlockReg();

InitDebugUar

SYS_LockRe

HyperRAM Init(HYPERRAM SPIM PORT);
SPIM MYPER EnterDirectMapMode(HYPERRAM SPIM PORT);

info("%s: \n", _ FUNCTION );

Figure: Peripheral Initialization

9.4.4 Main Loop

The main loop in main_task() orchestrates the capture-inference-display cycle:

- 255 -



System

Initialization Capture

Images

H

Inference 3.

H

Post
Processing

H

Draw Box &
Display Result

H

Clear Buffer 6.

{

Figure: Main loop

1. Check Buffers
e If no empty frame buffer is available, terminate loop.
2. Image Capture
e Acquire images from the camera sensor into available frame buffers.
3. Inference Execution
e Retrieve data from full buffers — run YOLOX model inference.
4. Post-Processing
e Scale detection boxes to match original resolution.
e Filter by confidence thresholds.
e Apply Non-Maximum Suppression (NMS) to eliminate redundant boxes.
5. Result Visualization
e Draw bounding boxes via DrawlmageDetectionBoxes.
e Render class labels with imlib_draw_string.
6. Buffer Recycling
e Clear used frame buffers for next capture cycle.
[Notes]
1. Main Loop Multithreading Optimization

The main loop can be optimized through a multithreaded approach, for
example by allocating image acquisition, inference, and post-processing to
separate threads. This parallelization enhances overall system efficiency.

- 256 -



2. Model Inference and Dynamic Memory Management

After each inference execution, dynamically release memory resources to
prevent memory leaks and ensure stable long-term system operation.

9.4.5 Buffer Management Functions

1. Frame Buffer

The frame buffer (framebuf) in the main_task() function’s main loop is a
critical component for managing image data acquired from the camera. Its
primary function is to temporarily store captured frames before performing
format conversion, inference, and subsequent processing.

(1) Actual Process
a. get_empty_framebuf(): Obtains an empty buffer frame to store new
image data.

S FRAMEBUF *get empty framebuf()
i;

or (i =8; i< 31 +H)

if (s asFramebuf[i].eState == eFRAMEBUF EMPTY
return &s_asFramebuf[1i];

return

Figure: get_empty_framebuf() function

b. get_full_framebuf(): Retrieves a filled buffer frame, resizes it, and
converts it into the YOLOX-Nano model input format.

-257 -



S _FRAMEBUF *get full framebuf()

@; 1 < NUM_FRAME ; 1 ++)

s_asFramebuf[i].eState == eFRAMEBUF FULL
return &s_asFramebuf|[i];

Figure: get_full_framebuf() function

c. get_ inf_framebuf(): Retrieves a frame that has completed inference,
overlays detection results (e.g., bounding boxes and labels), and
displays it on the screen.

5 FRAMEBUF *get inft framebuf()
i;

or (i=0; i« 3 1 ++)

s_asFramebuf[i].eState == eFRAMEBUF_ TINF
return &s_asFramebuf[i];

return

Figure: get_inf_framebuf() function

(2) Function Implementations
a. get_empty_framebuf(): Iteratively checks for available empty frames
and returns one.
b. get_full_framebuf(): Uses similar logic to find frames already
populated with captured data.
c. get_inf_framebuf(): Handles frames that have completed inference
and passes them back to the display module.

Image Acquisition

- 258 -



During image acquisition, buffer management is crucial. The state of each
buffer frame (empty, filled, or inference completed) determines whether
capture and processing can proceed correctly.

Before capturing a new frame, the system must invoke get_empty_framebuf()
to ensure an available buffer is allocated for new data.

S _FRAMEBUF *get empty framebuf()

Lt

for (i = @; i < NUM FRAMEBUF; i ++)

if (s_asFramebuf[i].eState == eFRAMEBUF_EMPTY
return &s asFramebuf[i];

return

Figure: Avoid overwriting existing data when capturing images

Complete Acquisition Process

e Confirm buffer availability to avoid overwriting existing data.

e Acquire image data via the camera module interface and store itin the
allocated buffer.

e [facquisition fails (e.g., unable to read data), execute error handling and
retry logic.

[Notes]

e Multi-buffer Management: Introducing multiple buffer frames significantly
improves throughput, particularly in high-frame-rate camera scenarios.

e Error Handling: Image acquisition errors must be logged clearly, with retry
mechanisms to improve system stability.

3. Inference Execution

Inference involves extracting image data from filled buffers, feeding it to the
YOLOX model, and storing or displaying the results.

(1) get_full_framebuf()
e Extracts a data block from the filled buffer for inference.

- 259 -



e Verifies availability by checking the buffer’s state.
e The extracted data is then passed to the YOLOX model for inference.

get full framebuf()

©; 1 < NUM FRAMEBUF; i ++)

s_asFramebuf[i].eState == eFRAMEBUF FULL
return &s asFramebuf|[i];

Figure: get_full_framebuf() function

inferencelob->responseQueue = inferenceResponseQueue;
inferenceJob->pPostProc = &postProcess;
inferenceJob->modelCols = inputImgCols;
inferenceJob->mode1Rows = inputImgRows;
inferencelob->srcImgWidth = fullFramebuf->frameImage.w;
inferencelob->srcImgHeight = fullFramebuf->frameImage.h;
inferencelob->results = &fullFramebuf->results;

xQueueSend(inferenceProcessQueue, &inferencelob, portMAX DELAY);
fullFramebuf->eState = eFRAMEBUF INF;

Figure: Execute inference code

(2) PresentinferenceResult Function
e Displays inference results, including detected object class labels and
bounding box positions.
e Iterates over each detection result, formats it, and outputs to the
console or display.
e Results can also be forwarded to other modules for further
processing.

- 260 -



PresentInferenceResult| B sulty> &results

i ¢ results.size(); ++i)

y=%d, u=%d, h%d}\n", 1,

m_w, results[i].m_h);

Figure: PresentIinferenceResult function

9.4.6 Post-Processing

Post-processing extracts useful information from the raw model output and
visualizes it.

1. Core Steps

(1) Bounding Box Scaling: Ensures detection boxes match the original image
resolution.

(2) Result Extraction: Retrieves bounding box coordinates and confidence
scores.

(8) Non-Maximum Suppression (NMS): Removes redundant overlapping
boxes, retaining only the most relevant detections.

(4) Result Storage: Stores finalized detections into structured result data.

2. Key Functions
e DetectorPostprocessing::RunPostProcessing

Performs full post-processing: initializes network structures, extracts
bounding box data, executes NMS, and adjusts final results.

Parameters:

e imgNetRows, imgNetCols: Inputimage size for the network.
e modelOutput@: Model output tensor.
e resultsOut: Output vector to store processed results.

Enhancements:

-261 -



e totalBoundingBoxes: Tracks the number of detected bounding
boxes.

e IncrementtotalBoundingBoxes when pushing results into resultsOut.

e Display total bounding box count via std::cout.

e Ensure only detections above the confidence threshold are counted (if
(it.prob[j] > 0)).

e Example thresholds: Confidence = 0.6, NMS = 0.25.

DetectorPostprocessing::InsertTopNDetections

Inserts detection results into a ranked list by confidence score. Maintains
a fixed-size list to avoid excessive memory usage.

DetectorPostprocessing::GetNetworkBoxes

Converts raw model outputs into bounding box coordinates. Filters
detections by confidence.

Processing Logic:

e Computes stride values across scales.
e Extracts coordinates (x, y, w, h).
e Adjusts bounding box size and position according to stride.

9.4.7 Bounding Box Rendering and Display

Visualization is achieved by overlaying detection results directly on the image.

DrawImageDetectionBoxes Function

Draws bounding boxes and class labels on the image for each detection
result.

Parameters:

drawImg: Pointer to the image buffer for rendering.
results: List of detection results with bounding box information.
labels: Class labels corresponding to detected objects.

-262 -



DrawImageDetectionBoxes(

detection: :Detecti 1t» &results,
g> &labels)
&result : results)
imlib draw_rectangle(drawImg, result.m_x8, result.m_y@, result.m w, result.m_h, COLOR BS MAX, 1,

imlib draw_string(drawImg, result.m_x ult.m_yd - 16, labels[result.m_cls].c_str(), COLOR B5 MAX, 2, @, @,

] ] 3 Yy 3 »

Figure: DrawImageDetectionBoxes function

Implementation:

e imlib_draw_rectangle: Draws bounding boxes on the image.
e imlib_draw_string: Renders object class labels near bounding boxes.

This visualization step ensures detection results are human-interpretable,
making them suitable for analysis, debugging, or end-user display.

9.5 Conclusion and Future Outlook

9.5.1 Conclusion

Fingerling counting is a critical management process in aquaculture. Accurate
fingerling enumeration not only enables farmers to optimize resource allocation
but also enhances farming efficiency and ensures the healthy growth of aquatic
species. With the advancement of technology, traditional manual counting
methods are gradually being replaced by automated and intelligenttechniques. In
particular, image processing and artificial intelligence (Al)-based counting
methods have demonstrated significant advantages in practical applications.
These methods not only improve accuracy and efficiency but also meet the high-
volume demands of large-scale aquaculture facilities.

This study introduces modern image processing techniques to design and
implement a deep learning-based fingerling counting system. The system
effectively identifies and counts fingerlings, significantly reducing human error
while improving counting speed and accuracy. Experimental results demonstrate

-263 -



that, compared with traditional methods, image recognition-based approaches
better address the dynamic movements of fingerlings in water, thereby
overcoming limitations of conventional counting techniques.

9.5.2 Future Outlook

Despite notable progress, several challenges remain for fingerling counting
technologies. First, system accuracy requires improvement across varying water
conditions and species. Factors such as underwater lighting, turbidity, and
overlapping or densely packed fingerlings can adversely affect results. Future
research may focus on enhancing system adaptability in complex environments,
forexample, by developing more efficientimage processing algorithms to improve
accuracy under low-light or turbid water conditions.

Second, with the expansion of aquaculture operations, the demand for big data
processing and real-time monitoring is growing. Future fingerling counting
systems may integrate cloud computing and Internet of Things (loT) technologies
to achieve full-process monitoring and data analytics. Such systems would
continuously collect environmental data, fingerling growth status, and other
relevant metrics, providing farmers with fine-grained decision support. Through
advanced data analysis, optimal operational strategies could be recommended
to further enhance aquaculture productivity.

Finally, with the continuous evolution of deep learning and Al, future fingerling
counting systems are expected to become increasingly self-learning and adaptive.
By leveraging ongoing data training, these systems will autonomously adapt to
diverse aquaculture environments, progressively improving accuracy and
efficiency. Moreover, the scope of application may expand beyond fingerlings to
include monitoring of juvenile and adult fish populations, as well as contributing
to conservation and ecological monitoring of aquatic species.

In summary, fingerling counting technologies possess substantial development
potential. As technological advancements continue, these solutions are expected
to further transform traditional aquaculture management models, delivering
greater productivity gains and supporting the sustainable growth of the
aquaculture industry.

- 264 -



9.5.3 References

English

e PyTorch: Previous Versions
https://pytorch.org/get-started/previous-versions/

e  YOLOX-TI-Lite (TFLite INT8) Implementation — GitHub Repository
https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8

Traditional Chinese

e Utilizing Conda for Establishing and Managing Python Virtual Environments
https://medium.com/ai-for-k12/%E5%88%A9%E7%94%A8-conda-
%E5%BB%BA%E7%AB%8B%ES5%8F%8AY%E7 %AE%A1%E7%90%86-python-
%E8%99%9B%E6%93%ACY%E7%92%B0%E5%A2%83-cc1c89d96fa9

e HackMD: YOLOX Deployment Notes
https://hackmd.io/@zxcasd89525/Syw8BypDi

- 265 -


https://pytorch.org/get-started/previous-versions/
https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8
https://medium.com/ai-for-k12/%E5%88%A9%E7%94%A8-conda-%E5%BB%BA%E7%AB%8B%E5%8F%8A%E7%AE%A1%E7%90%86-python-%E8%99%9B%E6%93%AC%E7%92%B0%E5%A2%83-cc1c89d96fa9
https://medium.com/ai-for-k12/%E5%88%A9%E7%94%A8-conda-%E5%BB%BA%E7%AB%8B%E5%8F%8A%E7%AE%A1%E7%90%86-python-%E8%99%9B%E6%93%AC%E7%92%B0%E5%A2%83-cc1c89d96fa9
https://medium.com/ai-for-k12/%E5%88%A9%E7%94%A8-conda-%E5%BB%BA%E7%AB%8B%E5%8F%8A%E7%AE%A1%E7%90%86-python-%E8%99%9B%E6%93%AC%E7%92%B0%E5%A2%83-cc1c89d96fa9
https://hackmd.io/@zxcasd89525/Syw8BypDi

10 Smart Agriculture 3 — Fish Species Recognition

10.1 Case Introduction — Fish Species Recognition

10.1.1 Application Scenario

Using a camera module to capture images of fish in water, the captured frames
are processed by the development board. The recognition results are then
displayed on the LCD panel of the Nuvoton M55M1 development board. In this
case, 13 fish species were used to simulate real-world conditions (datasetimages
collected at Farglory Ocean Park).

Figure: Actual Recognition Results

10.1.2 Project Summary

The project adopts the YOLOX-ti-lite_tflite_int8 model to train the fish species
dataset. The model undergoes a series of framework conversions: PyTorch —
ONNX — TensorFlow Lite, followed by quantization into INT8 format to reduce
model size and improve inference speed. This process optimizes both
performance and footprint.

Next, the Vela compiler is applied to allocate suitable operations to the NPU,
further accelerating inference. The optimized model is then compiled with Keil
and programmed into the Nuvoton M55M1 development board, where recognition
results are displayed in real time.

- 266 -



10.1.3 Data Processing and Inference Workflow

Dataset Preparation

Model Framework Conversion

Model Quantization & Vela Compilation
Deployment to Development Board

ok wnp =

On-board Inference and Result Display

Deploy to
Prepare Data Development
Board

Figure: Data Processing and Inference Workflow

10.1.4 Results Summary

The experimental evaluation achieved a validation accuracy of 96.5% (250/259),
demonstrating the system’s effectiveness in recognizing multiple fish species
under practical conditions.

10.2  System Workflow and Program Modules

1. Core Files

main.cpp
Responsible for system initialization and invoking other functional
modules.

BoardInit.cpp / BoardInit.hpp
Handles hardware board initialization, including GPIO, I°C, SPI, and other
peripheral interfaces.

InferenceTask.cpp / InferenceTask.hpp
Manages model loading and execution of inference tasks.

DetectorPostProcessing.cpp / DetectorPostProcessing.hpp
Processes model output results and converts them into actual bounding
boxes. Since the raw output of the model consists of coordinate data
(e.g., X, ¥, w, hor pre-defined bounding boxes), this module performs:

e Qutput parsing

- 267 -



e NMS (Non-Maximum Suppression)
e Coordinate transformation logic

mpu_config_ M55M1.h

Defines hardware parameters and processor-related configurations for
the M55M1 development board.

. Supporting Directories

Device, GCC, Keil, IAR
Provide device drivers and compiler-specific project configuration files.

Model:
Contains machine learning models and training artifacts.

ProfilerCounter:
Implements performance profiling and runtime analysis utilities.

Pattern:

Stores test cases, sample inputs, or template datasets for validation and
benchmarking.

10.3 Dataset and Model Training

10.3.1 Dataset Preparation

. Annotation Tool: The dataset was annotated using Labellmg.

Data Source: Images were collected on-site at Farglory Ocean Park, covering
13 fish species.

. Annotation Format: COCO JSON format, with the following distribution:

e Training Set: 1,031 images

e Validation Set: 259 images

10.3.2 Model Training

Framework: PyTorch

- 268 -



Model Selection: YOLOX-ti-lite_tflite_int8 — optimized for high performance
and lightweight deployment on embedded devices.

. Training Environment: NVIDIA GeForce RTX 4060 GPU, training time = 60

minutes per session.

. Model Source & Reference:

e GitHub Repository: https://github.com/MaxCYCHEN/yolox-ti-
lite_tflite_int8

10.3.3 Model Framework Conversion

. Conversion pipeline: PyTorch — ONNX — TensorFlow Lite.

. Applied INT8 quantization to reduce model size and accelerate inference

while preserving accuracy, tailored for embedded deployment.

10.3.4 Environment Setup Steps

. Create Python Environment

conda create --name yolox_nu python=3.10
conda activate yolox_nu

. Upgrade pip and setuptools

python -m pip install --upgrade pip setuptools

Install CUDA, PyTorch, and MMCV
Selected versions based on GPU compatibility:

e CUDA:11.8
e PyTorch: 2.0
e MMCV:2.0.1
Installation:

pip install mmcv==2.0.1 -f
https://download.openmmlab.com/mmcv/dist/cull8/torch2.0/inde
X.html

Install dependencies

- 269 -


https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8
https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8

python -m pip install --no-input -r requirements.txt

5. Install YOLOX

python setup.

10.3.5

py develop

Dataset Directory Structure

Prepare training data in the following structure under Datasets

Datasets/<your_dataset_name>/
annotations/
train_annotation_json_file
val _annotation_json_file

train2017/
val2017/

10.3.6

# training images
# validation images

Training Parameters

In yolox_nano_ti_lite_nu.py:

self.input_size
self.test_size

self.num_classes

self.max_epoch

(320, 320)
(320, 320)
13

150

Exp(MyExp) :
__init_ (self):
super(Exp, self)._ init_ ()

self.
self.

num_classes = 13
depth = .33

self.width = ©.25

self
self
self
self
self.
self
self.

.input_size = (32e, 320)
.random_size = (10, 20)
.mosaic_scale = (@.5, 1.5)
.mosaic_prob = ©.5

enable_mixup =

.exp_name = os.path.split(os.path.realpath(__file_ ))[1].split(".")[@]

act = "relu"

.data_dir = "datasets/fish_coco_final"
.train_ann = "tra json"

.val_ann = "val2@17.json"

Figure: Training Parameter Configuration

-270-



10.3.7 Use Pretrained Model

1. Configuration file: exps/default/yolox _nano_ti lite nu.py
2. Update dataset paths:

self.data_dir = "datasets/your_coco"
self.train_ann = "your_train.json"
self.val_ann "your_val.json"

10.3.8 Start Training

python tools/train.py -f <MODEL_CONFIG_FILE> -d 1 -b
<BATCH_SIZE> --fpl6 -0 -c <PRETRAIN_MODEL_PATH>

10.3.9 Model Conversion & Quantization

PyTorch to ONNX

python tools/export_onnx.py -f <MODEL_CONFIG_FILE> -c
<TRAINED_PYTORCH_MODEL> --output-name <ONNX_MODEL_PATH>

Generate Calibration Data

python demo/TFLite/generate_calib_data.py --img-size
<IMG_SIZE> --n-img <NUM_IMAGES> -o <CALI_DATA NPY FILE> --img-
dir <TRAIN_IMAGE_DIR>

Convert ONNX to TFLite

onnx2tf -i <ONNX_MODEL_PATH> -oiqt -qcind images
<CALI_DATA_NPY FILE> "[[[[1,1,1]]]]1"

10.3.10 Vela Compilation

1. Place quantized modelunder vela/generated/.
2. Update variables.bat with:

set MODEL_SRC_FILE=<your_tflite model>

-271 -



set MODEL_OPTIMISE_FILE=<output_vela_model>

Run gen_model_cpp to generate compiled output.
Final model output:

vela/generated/yolox_nano_ti_lite_nu_full integer_quant_vela
.tflite.cc

10.4  C++ Design, Deployment, and Flashing

10.4.1 Program Flow Overview

. Software Functional Design

Main.cpp: Responsible for managing the core board modules, including:
e Camera module

e LCD display module

e Detection box drawing functionality

Flashing Process

(1) Keil IDE: Utilized for embedded development and flashing modules onto
the target device.

(2) Project Setup: Create a project supporting hardware—software co-
development.

(3) Model Deployment: Use Keil to flash the compiled model file into the
target hardware.

Program Workflow
(1) System Startup and Initialization
a. Calls BoardInit.cpp to initialize hardware resources.
b. Initializes memory allocation and peripheral modules.
(2) Model Loading and Inference Execution
a. Loadsthe machine learning model from the Model directory.
b. Calls InferenceTask.cpp to execute inference:
(a) Inputs image data into the model.
(b) Receives inference outputs (e.g., detection results).
(3) Inference Result Post-Processing
a. Calls DetectorPostProcessing.cpp to:

-272 -



(a) Apply filtering (e.g., Non-Maximum Suppression, bounding box
refinement).
(b) Store or return results to the main program.

(4) Output and Response
a. Returns processed inference results to the main program.
b. Displays results on the LCD or transmits them over the network.

10.4.2 Hardware Resource Configuration and Main
Program Implementation

Main.cpp Responsibilities

1.

Board Initialization: Configure system clock, GPIO, and essential hardware
modules.

2. Feature Flags:
e USE_CCAP for enabling the image sensor (camera capture).
e USE_DISPLAY for enabling the LCD display module.
3. Al Model Setup:
e Instantiates the YOLO model using Arm®::app::YoloXnanoNu.
e [nitializes the model and allocates Tensor Arena memory buffers.
4. Inference Task Creation:
e Uses FreeRTOS xTaskCreate() to spawn inference tasks, handling input
image data.
5. Image Processing Pipeline:
e Image capture
e Resizing and format conversion
e Inference execution
e Post-processing (object detection, bounding box drawing, labeling)
10.4.3 Main Program Execution Flow
Steps:

1.

System Startup and Initialization

-273-



Hardware initialization
Peripheral configuration

Main Loop Execution

Image Capture: Acquire frames from the camera module.

Inference: Feed frames into the Al model and obtain detection results.
Post-Processing: Apply bounding box decoding, filtering, and formatting.
Display Results: Draw detection boxes and labels, update LCD output.
Buffer Recycling: Clear memory buffers and repeat.

System
Initialization

Capture
Images

H

Inference

H

Post
Processing

H

Draw Box &
Display Result

Clear Buffer

{

Figure: Main Program Flow

10.4.4 System Initialization

BoardInit() Responsibilities

1. Ensure stable system clocks (CLK) and reliable communication

mechanisms.

Provide base-level I/0 for downstream modules (image processing, neural

inference).

3. Initialize:

System Clock (SYS_Init) with external RC and HXT sources.

-274 -



BoardInit(

SYS UnlockReg();

SYS Init();

InitDebuguart();

SYS LockReg();

HyperRAM Init(HYPERRAM SPIM PORT);

SPIM HYPER EnterDirectMapMode(HYPERRAM SPIM PORT);

info("%s: complete\n",  FUNCTION );

Figure: CLK Initialization
e Clockrouting and update of system core frequency.
e Peripherals: UART, HyperRAM, and board-specific hardware.

Key Components
e UART Configuration: Supports communication and debugging output.
e HyperRAM Mapping: Allocates large buffers required for neural network
workloads.

10.4.5 Main Loop Details

The main loop executes the system’s full vision pipeline:

1. Buffer Availability Check
e If noimage data is available, exit the loop.

2. Image Acquisition

e Capture new frame from camera sensor and push into buffer.

3. Inference Execution
e Run detection model on preprocessed frame.

4. Post-Processing

e Decode detection results, filter bounding boxes, finalize outputs.

-275-



5. Drawing and Display

e Overlay bounding boxes on the image.
e Outputthe processed image via LCD display.

6. Buffer Recycling

e Clear memory to prepare for next capture cycle.

[Notes]

1.

Multithreading Optimization

Main loop tasks (image capture, inference, post-processing) can be
parallelized across multiple threads to enhance throughput and system
responsiveness.

Dynamic Memory Management

Memory should be released after each inference cycle to prevent memory
leaks and ensure long-term stability.

10.4.6 Buffer Management Functions

Frame Buffer

The frame buffer (framebuf) in the main_task() function’s main loop is a
critical component for managing image data acquired from the camera. Its
primary function is to temporarily store captured frames before performing
format conversion, inference, and subsequent processing.

(1) Actual Process
a. get_empty_framebuf(): Obtains an empty buffer frame to store new
image data.

-276 -



S FRAMEBUF *get empty framebuf()

ij
for (i = @; 1 < 3 1 +H)
if (s_asFramebuf[i].eState == eFRAMEBUF EMPTY

return &s_asFramebuf[i];

return

Figure: get_empty_framebuf() function

b. get_full_framebuf(): Retrieves a filled buffer frame, resizes it, and
converts it into the YOLOX-Nano model input format.

S _FRAMEBUF *get full framebuf()

i < NUM_FRAMI ; 1 +)

s_asFramebuf[i].eState == eFRAMEBUF FULL
return &s_asFramebuf|[i];

Figure: get_full_framebuf() function

c. get_inf_framebuf(): Retrieves a frame that has completed inference,
overlays detection results (e.g., bounding boxes and labels), and
displays it on the screen.

-277 -



5 FRAMEBUF *get inft framebuf()

i;

for (1 =0; 1 < 5 1 ++)

if (s_asFramebuf[i].eState == eFRAMEBUF_ INF

return &s_asFramebuf[i];

return

Figure: get_inf_framebuf() function

(2) Function Implementations
a. get_empty_framebuf(): Iteratively checks for available empty frames
and returns one.
b. get_full_framebuf(): Uses similar logic to find frames already
populated with captured data.
c. get inf_framebuf(): Handles frames that have completed inference
and passes them back to the display module.

Image Acquisition

During image acquisition, buffer management is crucial. The state of each
buffer frame (empty, filled, or inference completed) determines whether
capture and processing can proceed correctly.

Before capturing a new frame, the system must invoke get_empty_framebuf()
to ensure an available buffer is allocated for new data.

S_FRAMEBUF *get empty framebuf()

Thf

for (1 = ®; 1 < NUM FRAMEBUF; 1 ++)

it (s_asFramebuf[i].eState == eFRAMEBUF EMPTY
return &s_asFramebuf[i];

return

-278 -



Figure: Avoid overwriting existing data when capturing images

Complete Acquisition Process

e Confirm buffer availability to avoid overwriting existing data.

e Acquire image data via the camera module interface and store itin the
allocated buffer.

e [facquisition fails (e.g., unable to read data), execute error handling and
retry logic.

[Notes]

e Multi-buffer Management: Introducing multiple buffer frames significantly
improves throughput, particularly in high-frame-rate camera scenarios.

e Error Handling: Image acquisition errors must be logged clearly, with retry
mechanisms to improve system stability.

3. Inference Execution

Inference involves extracting image data from filled buffers, feeding it to the
YOLOX model, and storing or displaying the results.

(1) get_full_framebuf()
e Extracts a data block from the filled buffer for inference.
e Verifies availability by checking the buffer’s state.
e The extracted data is then passed to the YOLOX model for inference.

S _FRAMEBUF *get full framebuf()
i;

for (i = @; i < NUM FRAMEBUF; i ++)

if (s_asFramebuf[i].eState == eFRAMEBUF FULL
return &s asFramebuf[i];

Figure: get_full_framebuf() function

-279-



inferenceJob->responseQueue = inferenceResponseQueue;
inferenceJob->pPostProc = &postProcess;
inferencelob->modelCols = inputImgCols;
inferencelob->mode1Rows = inputImgRows;
inferencelob->srcImgWidth = fullFramebuf->frameImage.w;
inferenceJob->srcImgHeight = fullFramebuf->frameImage.h;

inferenceJob->results = &fullFramebuf->results;

xQueueSend(inferenceProcessQueue, &inferencelob, portMAX DELAY);
fullFramebuf->eState = eFRAMEBUF INF;

Figure: Execute inference code

(2) PresentlinferenceResult Function
e Displaysinference results, including detected object class labels and
bounding box positions.
e Iterates over each detection result, formats it, and outputs to the
console or display.
e Results can also be forwarded to other modules for further
processing.

PresentInferenceResult|

[i].m_x8, results[i].m y@, results[i].m_w, results[i].m_h);

Figure: PresentinferenceResult function

10.4.7 Post-Processing

Post-processing extracts useful information from the raw model output and
visualizes it.

-280 -



1. Core Steps

(1) Bounding Box Scaling: Ensures detection boxes match the original image
resolution.

(2) Result Extraction: Retrieves bounding box coordinates and confidence
scores.

(3) Non-Maximum Suppression (NMS): Removes redundant overlapping
boxes, retaining only the most relevant detections.

(4) Result Storage: Stores finalized detections into structured result data.

2. Key Functions
e DetectorPostprocessing::RunPostProcessing

Performs full post-processing: initializes network structures, extracts
bounding box data, executes NMS, and adjusts final results.

Parameters:

e 1imgNetRows, imgNetCols: Inputimage size for the network.
e modelOutput@: Model output tensor.
e presultsOut: Output vector to store processed results.

e DetectorPostprocessing::InsertTopNDetections

Inserts detection results into a ranked list by confidence score. Maintains
a fixed-size list to avoid excessive memory usage.

e DetectorPostprocessing::GetNetworkBoxes

Converts raw model outputs into bounding box coordinates. Filters
detections by confidence.

Processing Logic:

e Computes stride values across scales.
e Extracts coordinates (x, y, w, h).
e Adjusts bounding box size and position according to stride.

10.4.8 Bounding Box Rendering and Display

Visualization is achieved by overlaying detection results directly on the image.

e DrawImageDetectionBoxes Function

-281 -



Draws bounding boxes and class labels on the image for each detection
result.

Parameters:

drawImg: Pointer to the image buffer for rendering.
results: List of detection results with bounding box information.
labels: Class labels corresponding to detected objects.

etection: :Detect ulty Gresults,

&result @ results)

imlib draw rectangle(drawImg, result.m x@, result.m y8, result.m w, result.m h, COLOR BS MAX, 1,
imlib draw_string(drawImg, result.m x@, result.m y@ - 16, labels[result.m_cls].c_str(), COLOR B5 MAX, 2, @, @,
1 ¥ ¥ E‘\.‘ ¥ ;

Figure: DrawImageDetectionBoxes function

Implementation:

e imlib_draw_rectangle: Draws bounding boxes on the image.
e imlib_draw_string: Renders object class labels near bounding boxes.

This visualization step ensures detection results are human-interpretable,
making them suitable for analysis, debugging, or end-user display.

10.5 Conclusion and Future Outlook

10.5.1 Conclusion

This study successfully developed an efficient fish species recognition system
based on YOLOX-ti-lite_tflite_int8, achieving real-time inference on embedded
hardware. Through multi-stage model training, conversion, and optimization, we
not only improved inference speed but also significantly reduced model size,
making the system well-suited for deployment on resource-constrained devices.

-282 -



1.

Model Training and Conversion

The fish species recognition model was initially trained using PyTorch, then
converted to the ONNX format before being further transformed into a
TensorFlow Lite model. Using INT8 quantization, we effectively reduced model
size while accelerating inference. This quantization process minimized storage
requirements and improved runtime efficiency, without sacrificing recognition
accuracy, thus laying a foundation for deployment on embedded and low-
power platforms.

NPU Acceleration and Performance Optimization

To further optimize performance, the Vela compiler was applied to partition
operations between the CPU and Neural Processing Unit (NPU). By offloading
suitable operators onto the NPU, inference latency was substantially reduced.
This optimization improved system responsiveness, demonstrating that real-
time fish recognition is feasible on low-power hardware.

Development Board Deployment and Real-Time Visualization

The optimized model was deployed to the Nuvoton M55M1 development
board, where real-time inference and visualization of fish recognition results
were successfully achieved. This deployment validates the practicality of the
proposed system and highlights the potential of embedded Al inference
technology for real-world, low-power applications.

10.5.2 Future Outlook

While the research achieved promising results, several areas warrant further

exploration and enhancement:

1.

Balancing Accuracy and Model Size

Although quantization successfully reduced storage requirements and
improved inference speed, precision degradation may occur under certain
conditions. Future work could investigate advanced quantization methods
(e.g., mixed precision or quantization-aware training) to achieve an optimal
trade-off between accuracy and efficiency.

-283 -



2. Improving Model Generalization

Current performance is dataset-specific. To extend recognition robustness,
future studies should incorporate diverse datasets and consider techniques
such as domain adaptation or reinforcement learning to improve
generalization in unseen environments.

3. Real-Time Processing and Latency Optimization

Although real-time inference was achieved, additional optimization
opportunities remain. Future work could leverage more complex model
architectures, operator fusion, or software-hardware co-design to further
minimize latency and deliver smoother real-time video processing.

4. Expansion to Broader Applications

While the focus was on fish species identification, the framework can be
extended to other domains such as biological species recognition, industrial
quality inspection, or medical image analysis, demonstrating broad
applicability in embedded Al.

5. Advancementin Low-Power Edge Devices

With therise of loT and edge computing, low-power hardware will play a critical
role. Future efforts should emphasize optimization for ultra-low-power
platforms, enabling deployment of recognition systems in smaller, battery-
powered, or field-deployed devices.

10.5.3 References

English

e PyTorch: Previous Versions
https://pytorch.org/get-started/previous-versions/

e YOLOX-TI-Lite (TFLite INT8) Implementation — GitHub Repository
https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8

-284 -


https://pytorch.org/get-started/previous-versions/
https://github.com/MaxCYCHEN/yolox-ti-lite_tflite_int8

Traditional Chinese

e Utilizing Conda for Establishing and Managing Python Virtual Environments
https://medium.com/ai-for-k12/%E5%88%A9%E7%94%A8-conda-
%ES5%BB%BA%E7%AB%8B%ES%8F%8A%E7 %AE%AT1%E7%90%86-python-
%E8%99%9B%E6%93%AC%E7%92%B0%ES5%A2%83-cc1c89d96fa9

e HackMD: YOLOX Deployment Notes
https://hackmd.io/@zxcasd89525/Syw8BypDi

-285-


https://medium.com/ai-for-k12/%E5%88%A9%E7%94%A8-conda-%E5%BB%BA%E7%AB%8B%E5%8F%8A%E7%AE%A1%E7%90%86-python-%E8%99%9B%E6%93%AC%E7%92%B0%E5%A2%83-cc1c89d96fa9
https://medium.com/ai-for-k12/%E5%88%A9%E7%94%A8-conda-%E5%BB%BA%E7%AB%8B%E5%8F%8A%E7%AE%A1%E7%90%86-python-%E8%99%9B%E6%93%AC%E7%92%B0%E5%A2%83-cc1c89d96fa9
https://medium.com/ai-for-k12/%E5%88%A9%E7%94%A8-conda-%E5%BB%BA%E7%AB%8B%E5%8F%8A%E7%AE%A1%E7%90%86-python-%E8%99%9B%E6%93%AC%E7%92%B0%E5%A2%83-cc1c89d96fa9
https://hackmd.io/@zxcasd89525/Syw8BypDi

